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МОЖЛИВІСТЬ ЗАСТОСУВАННЯ ШТУЧНОГО ІНТЕЛЕКТУ 
ДЛЯ ПРОЦЕСІВ УПРАВЛІННЯ ПОЖЕЖНО-РЯТУВАЛЬНИМИ 

ПІДРОЗДІЛАМИ ПІД ЧАС ГАСІННЯ ПОЖЕЖ  
ІЗ ВИКОРИСТАННЯМ БПЛА

Мета. Статтю присвячено аналізу можливостей упровадження штучного інтелекту для оптиміза-
ції управління пожежно-рятувальними підрозділами під час ліквідації пожеж із використанням дронів 
та інтелектуальних систем. Мета дослідження полягає в обґрунтуванні застосування штучного інте-
лекту та математичних моделей підкріплювального навчання для автоматизації управлінських проце-
сів у сфері пожежогасіння. Під час наукового дослідження використовувалися загальнонаукові методи 
пізнання, зокрема аналіз і синтез, системний підхід, моделювання, узагальнення та порівняння.

Результати дослідження показують, що можливість використання штучного інтелекту в управ-
лінні пожежно-рятувальними підрозділами знаходить підтвердження в сучасній практиці, де поєд-
нання дронів, супутникових систем і наземних сенсорів забезпечує створення комплексних інтелек-
туальних рішень. Досліджено, що ключовим інструментом формалізації процесу навчання дронів 
є використання марковських процесів прийняття рішень, що ґрунтуються на п’яти основних компо-
нентах: просторі станів, просторі дій, функції переходів, функції винагороди та коефіцієнті дискон-
тування. Показано, що ця модель відображає складну динаміку розвитку пожежі та дає змогу врахо-
вувати взаємодію безпілотних літальних апаратів із навколишнім середовищем. Особливий акцент 
зроблено на функції винагороди, яка поєднує в собі параметри ефективності пригашення, економію 
ресурсів і показники безпеки, створюючи збалансовану систему прийняття рішень. Обґрунтовано, 
що використання марковських моделей забезпечує формування ієрархічних алгоритмів підкріплю-
вального навчання, що стає науковим підґрунтям для практичної реалізації застосування штучного 
інтелекту у сфері пожежогасіння. Практичне значення дослідження полягає у можливості створення 
науково обґрунтованих і технічно реалізованих систем управління пожежно-рятувальними підрозді-
лами з використанням ШІ та дронів, що сприятиме підвищенню безпеки й ефективності ліквідації 
пожеж.
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THE POSSIBILITY OF APPLYING ARTIFICIAL INTELLIGENCE  
TO THE MANAGEMENT OF FIRE AND RESCUE UNITS DURING FIREFIGHTING 

USING UAVs (DRONES)

Introduction. The article focuses on analyzing the potential of implementing artificial intelligence to 
optimize the management of fire and rescue units in extinguishing fires through the use of drones and intelligent 
systems. The purpose of the study is to substantiate the application of artificial intelligence and reinforcement 
learning mathematical models for automating management processes in the field of firefighting. The research 
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employed general scientific methods of cognition, including analysis and synthesis, a system-based approach, 
modeling, generalization, and comparison. 

The results demonstrate that the use of artificial intelligence in managing fire and rescue units is confirmed 
by modern practice, where the integration of drones, satellite systems, and ground sensors enables the 
development of comprehensive intelligent solutions. It was established that the key tool for formalizing the 
drone training process is the use of Markov decision processes, which rely on five main components: state space, 
action space, transition function, reward function, and discount factor. The study shows that this model reflects 
the complex dynamics of fire development and makes it possible to consider the interaction of unmanned aerial 
vehicles with the environment. Special attention is given to the reward function, which combines suppression 
efficiency, resource saving, and safety indicators, thus forming a balanced decision-making system. It is 
substantiated that the use of Markov models ensures the creation of hierarchical reinforcement learning 
algorithms, which provide the scientific foundation for the practical application of artificial intelligence in 
firefighting. The practical value of the study lies in the possibility of creating scientifically grounded and 
technically feasible management systems for fire and rescue units using AI and drones, which will enhance 
both safety and efficiency in fire suppression.

Key words: artificial intelligence, firefighting, drones, modeling, management.

Постановка проблеми. Автоматизовані без-
пілотні літальні апарати останніми десятиліттями 
стали надзвичайно поширеним інструментом у різ-
них сферах – від сільського господарства та моні-
торингу інфраструктури до екології, картографу-
вання та рятувальних операцій. Їхня популярність 
зумовлена здатністю виконувати складні завдання 
у важкодоступних або небезпечних середовищах, 
де залучення людини пов’язане з високим ризи-
ком. Водночас із 2022 року у зв’язку з воєнними 
подіями саме для України дрони набули особливої 
актуальності у військовій площині, ставши еле-
ментом національної безпеки та важливим чинни-
ком у забезпеченні обороноздатності.

Разом із тим досвід застосування дронів 
у гасінні пожеж уже давно впроваджується у сві-
товій практиці. Особливої актуальності ця тема 
набуває для регіонів, де пожежі виникають часто 
та несуть значну загрозу для людей і довкілля. 
Використання безпілотників дає змогу зменшити 
ризик для життя і здоров’я працівників пожежно-
рятувальних служб, забезпечуючи можливість 
оперативного аналізу ситуації та ефективного 
локального гасіння. Успішність упровадження 
таких систем значною мірою залежить від того, 
наскільки правильно дрони будуть запрограмо-
вані для виконання своїх функцій. Це, зі свого 
боку, визначає внесок у розвиток національної 
безпеки та підвищення рівня захищеності насе-
лення від надзвичайних ситуацій.

Аналіз останніх наукових досліджень і публі-
кацій. Питання можливості застосування штуч-
ного інтелекту для процесів управління пожежно-
рятувальними підрозділами під час гасіння пожеж 
є достатньо висвітленим у зарубіжній науковій 
літературі, водночас у вітчизняних дослідженнях 
воно лише починає отримувати увагу. Це пояс-
нюється тим, що більшість наукових публікацій 
присвячена розвитку методів і моделей штучного 

інтелекту, зокрема ієрархічного навчання з підкрі-
пленням, які можуть бути адаптовані до завдань 
управління в екстремальних умовах.

Значний внесок у формування теоретичної 
основи зробив Р. Bellman [2], який заклав принципи 
динамічного програмування, що стали фундамен-
том для сучасних методів оптимізації у склад-
них середовищах. П.  Dayan та G.  E.  Hinton [4] 
уперше розглянули концепцію феодального під-
ходу до навчання з підкріпленням, що дало змогу 
структурувати завдання різного рівня складності. 
Розвитком цієї ідеї став підхід T.  G.  Dietterich 
[5], який запропонував декомпозицію функції 
цінності (MAXQ), що забезпечує ефективніше 
управління багаторівневими процесами. Зі свого 
боку, R. S. Sutton, D. Precup та S. Singh [8] сформу-
лювали концепцію напів-МПП (semi-MDPs), яка 
дала можливість працювати із часовими абстрак-
ціями. Сучасні розробки, зокрема A. S. Vezhnevets 
та співавторів [9], адаптують ці підходи у вигляді 
нейронних мереж для ієрархічного навчання.

У прикладному аспекті варто відзначити дослі-
дження M. N. Alpdemir [1], спрямоване на плану-
вання траєкторій тактичних БпЛА в умовах радіо-
локаційної загрози із застосуванням ієрархічного 
навчання з підкріпленням (HRL), що поєднує 
метаконтролер для призначення цілей і контролер 
на основі DQN для вибору дій. Доцільно виді-
лити дослідження Y. Cheng і співавторів [3], яке 
присвячене плануванню траєкторій БпЛА у дина-
мічному середовищі з використанням алгоритму 
SA-MAXQ, який поєднує MAXQ та метод імітації 
підпалу для підвищення ефективності навчання, 
а також реалізує кооперативну формацію типу 
«лідер – ведений» із динамічною мертвою зоною 
для оптимізації руху кількох БпЛА.

Дослідження K.  Kou та колег [6] присвячене 
автономній навігації безпілотних літальних апа-
ратів (БпЛА) із використанням ієрархічного 
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навчання з підкріпленням на основі опцій, що 
поєднує високорівневу модель вибору поведінки 
та дві низькорівневі моделі – уникнення перешкод 
і досягнення цілі. Зі свого боку, T. Ren і співавтори 
[7] розробили масштабовану дворівневу архітек-
туру HT3O для керування у великих мобільних 
мережах із залученням БпЛА в контексті мобіль-
них обчислень на периферії (MEC). Натомість 
Y. Zhang із колегами [10] запропонували багато-
рівневу систему збору даних за участі кількох 
БпЛА для бездротових сенсорних мереж із зво-
ротним розсіюванням сигналу, де алгоритми гли-
бокого ієрархічного навчання забезпечують міні-
мізацію часу польоту, кооперативне навчання та 
підвищення ефективності збору інформації у над-
звичайних ситуаціях.

Серед вітчизняних дослідників варто виділити 
Ю. О. Даника та Д. О. Кіріченка [11], які проаналі-
зовали можливості застосування систем штучного 
інтелекту у сфері пожежної безпеки. Хоча робота 
має загальний характер, вона закладає основу для 
подальшої інтеграції зарубіжних методологічних 
підходів у практику функціонування пожежно-
рятувальних підрозділів.

Методологія та методи. Методологія дослі-
дження ґрунтується на загальнонаукових підхо-
дах аналізу, синтезу та системного моделювання, 
що дає можливість комплексно розглядати процес 
управління пожежно-рятувальними підрозділами 
з використанням дронів як складну динамічну 
систему. У межах методики застосовується мате-
матичне моделювання на основі марковських про-
цесів прийняття рішень, яке забезпечує формалі-
зацію взаємодії безпілотних літальних апаратів із 
середовищем, а також використання підкріплю-
вального навчання та його ієрархічних узагаль-
нень для побудови алгоритмів ефективного розпо-
ділу ресурсів, планування траєкторій і мінімізації 
ризиків у надзвичайних ситуаціях.

Метою статті є обґрунтування можливості 
застосування штучного інтелекту та математич-
них моделей підкріплювального навчання для 
автоматизації управління пожежно-рятувальними 
підрозділами із використанням дронів у процесі 
гасіння пожеж. Для досягнення поставленої мети 
у статті буде досліджено можливість і сучасну 
практику застосування штучного інтелекту 
у сфері пожежогасіння, а також показано осо-
бливості навчання дронів ефективно виконувати 
завдання на основі попереднього навчання та про-
грамування, що дає змогу адаптувати їх до склад-
них умов реальних надзвичайних ситуацій.

Виклад основного матеріалу. Сьогодні 
системи управління пожежно-рятувальними 
підрозділами дедалі більше набувають ознак 

автоматизації. Це зумовлено як зростанням масш-
табів пожеж, так і потребою у швидкому реагу-
ванні в умовах, де людські ресурси та традиційні 
методи організації роботи часто виявляються 
недостатньо ефективними. У світовій практиці 
активно впроваджуються автономні технології, 
серед яких важливу роль відіграють безпілотні 
літальні апарати (БпЛА), оснащені інтелектуаль-
ними алгоритмами. Такі апарати здатні самостійно 
аналізувати теплові карти пожежі, виявляти най-
більш критичні зони загоряння та спрямовувати 
свої дії на локалізацію вогню там, де це забезпе-
чує найбільший ефект. Вони виступають не лише 
як виконавці команд оператора, але і як активні 
агенти системи штучного інтелекту, здатні при-
ймати рішення в режимі реального часу [6].

Сучасна практика гасіння пожеж із використан-
ням штучного інтелекту формується на перетині 
робототехніки, картографування та систем моні-
торингу. Одним із прикладів є рішення FireAI, яке 
інтегрує алгоритми машинного навчання з плат-
формою Nova Maps. Це дає можливість дронам 
і наземним операторам не лише отримувати орто-
мозаїки та теплові зображення в реальному часі, 
але й накладати на карту спеціалізовані іконки 
з Wildfire Icon Pack. Завдяки цьому пожежні-ряту-
вальники отримують точне та зрозуміле відобра-
ження гарячих точок, напрямку вітру, небезпеч-
них зон і розташування ресурсів. Автоматизація 
таких процесів зменшує когнітивне навантаження 
на операторів, сприяючи швидшому ухвалю-
ванню рішення й зосередженню на безпосеред-
ньому управлінні підрозділами [11].

Додатковим прикладом є проєкт OVERWATCH, 
який розробляє алгоритми для картографування 
повеней і пожеж із використанням супутникових 
даних Sentinel та знімків із дронів. Тут штучний 
інтелект застосовується для підвищення просто-
рової роздільної здатності зображень до п’яти 
метрів, що суттєво покращує точність визначення 
контурів пожежі. На практиці це означає, що 
пожежні-рятувальники отримують детальні карти 
в реальному часі, де відображаються території 
згарища, динаміка поширення полум’я та пріори-
тетні напрямки введення технічних засобів подачі 
вогнегасних речовин. Випробування цієї техно-
логії на реальних прикладах в Іспанії показали, 
що алгоритми можуть напівавтоматично виділяти 
згорілі ділянки з високою точністю, тим самим 
оптимізуючи розподіл наявних ресурсів та марш-
рутів дронів і наземної техніки [11].

Ще один приклад дає програма 
ALERTCalifornia, яка спирається на мережу 
з понад тисячі високоточних камер, розміщених 
по всій Каліфорнії. Ці камери здатні працювати 
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цілодобово, обертаючись на 360 градусів та охо-
плюючи десятки миль. Алгоритми штучного інте-
лекту аналізують відеопотоки й автоматично вияв-
ляють аномалії, що можуть свідчити про початок 
займання. Тож пожежні-пожежники отримують 
сповіщення з географічними координатами та рів-
нем упевненості системи ще до того, як надходить 
перший дзвінок до служби порятунку 911. Наве-
демо практичний випадок: у вересні 2023  року 
штучний інтелект виявив займання більш ніж 
на пів години раніше, ніж люди повідомили про 
пожежу. Це дало можливість обмежити площу 
загоряння менш ніж чвертю акра, що демон-
струє реальну користь такої системи у зменшенні 
наслідків стихійних лих [11].

Усі ці приклади показують, що штучний інте-
лект у сфері пожежогасіння виконує роль не лише 
допоміжного інструменту, а й критичного еле-
мента сучасних стратегій реагування. Він здатен 
інтегрувати дані з дронів, супутників і наземних 
камер, створювати карти з високою деталізацією, 
а також попереджати про загрози значно швидше, 
ніж це можуть зробити традиційні методи. У такий 
спосіб технології забезпечують більш безпечне 
й ефективне керування операціями в умовах над-
звичайних ситуацій.

Однак побудова таких систем потребує 
розв’язання фундаментальної проблеми навчання. 
Якщо пожежно-рятувальні підрозділи традиційно 
діють на основі регламентів та досвіду, то дрони 
потребують алгоритмів, що дають їм можливість 
навчатися ефективних стратегій у процесі вза-
ємодії зі складним та динамічним середовищем. 
У цьому контексті ключовим є застосування мате-
матичного апарату підкріплювального навчання 
(Reinforcement Learning, RL), який формалізує 
процес прийняття рішень у вигляді послідовності 
дій і реакцій середовища. Витоки такого під-
ходу сягають теорії динамічного програмування 
Р.  Беллмана [2], яка заклала основу для форму-
вання концепції оптимального управління у сто-
хастичних середовищах.

Сучасні дослідження у сфері RL спираються 
на марковські процеси прийняття рішень (Markov 
Decision Processes, MDP), що дають змогу опи-
сати поведінку агента через формалізацію станів, 
дій, функції переходів і функції винагород [8]. 
Саме така структура забезпечує математичний 
інструментарій для навчання безпілотних апара-
тів, які виконують завдання в непередбачуваних 
умовах пожежі.

Водночас класичні методи RL виявляють 
обмеження у випадках, коли простори станів 
і дій є надто великими, а винагороди – рідкіс-
ними чи відстроченими. Для вирішення цих 

проблем було запропоновано ієрархічне підкрі-
плювальне навчання (Hierarchical Reinforcement 
Learning, HRL). Його розвиток пов’язаний із 
роботами Діттеріха (MAXQ-декомпозиція функ-
цій цінності) [5], концепцією options framework 
[8], а також із підходами так званого феодального 
навчання [4]. У випадку дронів для пожежно-
рятувальних підрозділів HRL дає змогу будувати 
багаторівневі структури управління, де вищий 
рівень відповідає за стратегічний вибір цілей 
(наприклад, блокування поширення вогню в пев-
ному секторі), а нижчі рівні реалізують конкретні 
тактичні дії (зміна траєкторії, скид води чи піни).

Застосування HRL для дронів уже продемон-
строване у сфері навігації та планування траєкто-
рій у складних середовищах [6], а також у задачах 
багатодронової координації [3]. Окремим напря-
мом досліджень є використання HRL для розпо-
ділу ресурсів у мобільних обчислювальних середо- 
вищах, що підтверджує універсальність цього 
підходу [7]. Усі ці напрацювання створюють під-
ґрунтя для адаптації методів HRL до специфіки 
пожежогасіння, де навчання агентів може здій-
снюватися на симуляційних моделях поширення 
пожежі, а функція винагороди має враховувати 
ефективність локалізації вогню, економію ресур-
сів і безпеку підрозділів.

Таким чином, автоматизація управління 
пожежно-рятувальними підрозділами із засто-
суванням дронів на основі штучного інтелекту 
є неможливою без використання математичного 
моделювання. Марковські процеси прийняття 
рішень забезпечують необхідний теоретичний 
фундамент, тоді як ієрархічні методи RL дають 
змогу формувати багаторівневі алгоритми, здатні 
ефективно працювати у складних умовах надзви-
чайних ситуацій.

Навчання дронів для підтримки пожежно-
рятувальних операцій природно формалізується 
як марковський процес прийняття рішень (S, A, P, 
R, γ), де:

S – простір станів, що кодує поточну конфі-
гурацію пожежі та ресурсів (наприклад, поле 
інтенсивності горіння або індикатор зайнятості 
осередків на сітці, метеопараметри – вектор вітру, 
вологість, температура, положення та швидкості 
дронів, залишок вогнегасної речовини й заряд 
акумуляторів);

A – простір дій, який охоплює безперервні 
керуючі впливи типу ui

t (вектор швидкості / тяги 
i-го дрона) і di

t (інтенсивність скидання вогнегас-
ної речовини), а також дискретні команди, напри-
клад повернення на базу; 

P(dst+1 | st,at) – стохастичний оператор пере-
ходів, що відображає еволюцію стану під діями 
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дронів та зовнішньої стохастики (модель поши-
рення пожежі, збурення вітру тощо); 

R(st,at) – миттєва винагорода; 
γϵ (0,1) – коефіцієнт дисконтування, який 

визначає вагу майбутніх наслідків відносно 
поточних.

Оптимізаційна мета полягає у відшуканні 
політики π максимізації знеціненого сумарного 
виграшу π [∑t = 0∞γtR(st, at)], що є безпосереднім 
наслідком динамічного програмування та мар-
ковського підходу до керування у стохастичних 
середовищах [2; 8].

Суть математичної моделі винагороди полягає 
в узгодженні трьох протилежних чинників: ефек-
тивності пригашення, ощадного використання 
ресурсів і безпеки (ризику). Зручно використову-
вати зважену адитивну структуру:

R(st,at) = αS(st,at) – βC(st,at) – ηΞ (st,at),

де S – «корисність» гасіння, що кількісно вимі-
рює запобігання поширенню вогню на короткому 
прогнозному горизонті;

C – витрати ресурсів (вода / піна, енергія, час 
простою / перельоту);

Ξ – показник ризику (підльоти до небезпечних 
зон, перетин заборонених секторів повітряного 
простору, наближення до пожежних-рятувальни-
ків); 

α,β,η > 0 – ваги, що задають компроміси між 
цими критеріями. Така форма сумісна як із таблич-
ними / градієнтними методами RL, так і з їх ієрар-
хічними узагальненнями для багаторівневого пла-
нування дій дронів [8].

Приклад формулювання для зменшення площі 
пожежі будується на контрфактичному порівнянні 
з пасивною динамікою. 

Нехай: A(t) = ∫Ωχburn(x,y,t)dxdy – площа актив-
ного горіння в момент t (де χburn – індикатор зайня-
тих вогнем осередків на області Ω). 

A0(t+Δ) – прогноз площі через крок Δ без втру-
чання;

Aa(t+Δ) – прогноз за умови застосування дії at 
з поточного стану st (обидва прогнози отриму-
ються тією самою моделлю поширення за одна-
кових зовнішніх умов). Тоді «корисність» прига-
шення на кроці:

S s a
A t A t

A t A tt t

a

,( ) = +( ) − +( )
+( ) − ( ) +

0

0

∆ ∆
∆

�
�ε
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де в знаменнику – нормувальна величина при-
росту площі за умовно-стабільного або пасивного 
сценарію на інтервалі [t, t+Δ], 

ε>0 – малий стабілізатор. 
Така нормалізація забезпечує масштабну інва-

ріантність і робить S ϵ [0, 1] у типових режимах. 

Для врахування неоднорідної цінності тери-
торій можна ввести просторові ваги w(x,y) (кри-
тична інфраструктура, населені пункти) і замі-
нити площу на «зважену» інтенсивність:

𝑆𝑆𝑆𝑆(𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 ,𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡) =
∫Ω𝑤𝑤𝑤𝑤(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) [𝐼𝐼𝐼𝐼0(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦, 𝑡𝑡𝑡𝑡 + Δ) − 𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑡𝑡𝑡𝑡 + Δ)] + 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦 

∫Ω𝑤𝑤𝑤𝑤(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)𝐼𝐼𝐼𝐼0(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑡𝑡𝑡𝑡 +  Δ)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦 + ℇ
, 

 де st – стан системи у момент часу t (опис 
пожежі, положення дронів, наявні ресурси тощо);

at – дія, яку виконують дрони в момент часу 
t (скидання порошку, маневр, зміна швидкості 
тощо);

Ω – область, де моделюється поширення 
пожежі (наприклад, обмежений квадрат на карті 
місцевості, розбитий на клітинки);

w(x,y) – просторові ваги, що задають цінність 
території у точці з координатами (x,y). Напри-
клад:

w(x,y) = 1 у «звичайному» лісі;
w(x,y) > 1 для критичної інфраструктури, насе-

лених пунктів, об’єктів з високим ризиком;
I0(x,y,t+Δ) – прогнозована щільність тепло-

виділення (або інший показник сили пожежі) 
у точці (x,y) у момент часу t+Δ, якщо дрони 
не втручаються (пасивна динаміка поширення 
вогню);

Ia(x,y,t+Δ) – прогнозована щільність теплови-
ділення в тій самій точці та в той самий момент 
часу, але з урахуванням дії at, яку виконали дрони 
на кроці [t, t+Δ];

[·] + – оператор позитивної частини. Він гаран-
тує, що враховується лише зменшення інтенсив-
ності пожежі. Якщо дії випадково погіршили 
ситуацію (Ia > I0), то внесок у чисельник не дода-
ється;

ε > 0 – малий стабілізатор, щоб уникнути 
ділення на нуль (наприклад, якщо в прогнозі без 
втручання вогонь повністю згасає).

Зміст формули такий: у чисельнику відобража-
ється зважене зменшення інтенсивності пожежі, 
яке вдалося досягти завдяки дії дронів за короткий 
прогнозований крок Δ. Це фактично «користь» від 
втручання.

У знаменнику стоїть прогнозована інтенсив-
ність пожежі в пасивному сценарії, зважена тими 
ж коефіцієнтами. Вона виконує роль нормованої 
величини, щоб показник S завжди лежав у про-
міжку [0,1].

Значення S можна тлумачити як частку від-
верненої шкоди. Якщо S ≈ 0 – дія не дала ефекту, 
якщо S ≈ 1 – дрон повністю ліквідував приріст 
пожежі на цьому кроці у всіх значущих зонах.

Така конструкція безпосередньо узгоджується 
з постановками RL/HRL: верхній рівень може 
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працювати з вагами w (стратегічні пріоритети), 
а нижчий – реалізовувати мікродії, що максимізу-
ють локальний внесок у чисельник [5].

Приклад деталізації ресурсу передбачає роз-
клад витрат на гідравлічну складову (вода / піна), 
енергетику польоту та часові витрати логістики. 
Для M дронів на кроці [t,t+Δ] формулу можна 
записати таким чином:

( ) ( )
Δ Δ

2
0 1

1

,  || || Δττ τ
+ +

=

 
= + + + 

 
∑ ∫ ∫
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τ τ τ e τ лог
i τ τ

C s a kw d d k c c u d k T , 

 

,

де di
τ – миттєва витрата вогнегасної рідини i-м 

дроном;
ui

τ – керуючий вектор (пропорційний повітря-
ній швидкості / тязі);

c0,c1 > 0 – параметри енергетичної моделі 
(базове споживання та квадратичний штраф за 
швидкість);

ΔTi
лог – еквівалентний час логістичних опера-

цій (маневри до точки скидання, повернення на 
базу для перезаправки);

kw, ke, kT > 0 – вартісні коефіцієнти. 
За потреби до математичної моделі можна 

включити штраф за пікові витрати diτ для запобі-
гання «залпам» і поліпшення змочування: напри-
клад, додатковий доданок kpeak∫(di

τ)2dτ. 
Безпеку Ξ (st,at) моделюють як інтеграл пере-

тину траєкторій дронів із полем небезпеки h(x,y,t) 
(круті схили, вибухонебезпечні зони, коридори 
польотних обмежень) та/або як штраф за набли-
ження до наземних підрозділів нижче за допусти-
мий радіус, причому великі порушення кодуються 
бар’єрними штрафами, щоб політика навчалась їх 
суворо уникати.

Узгодження вищенаведених складових 
у R(st,at) забезпечує прозору інтерпретацію комп-
ромісів і придатність як до одноагентного, так і до 
багатоагентного навчання; за ієрархічної органі-
зації можна, наприклад, на верхньому рівні мак-
симізувати зважену «стратегічну» корисність S 
за обмежень на агреговані ресурси, тоді як нижні 
рівні мінімізують локальні C за фіксованих підці-
лей. Така марковська постановка та вибір функ-
ції винагороди відповідають загальним принци-
пам оптимального керування з підкріпленням 
і підтверджуються як теоретичними засадами, так 
і практикою у застосунках до безпілотних плат-
форм.

Висновки. Можливість застосування штучного 
інтелекту в управлінні пожежно-рятувальними 
підрозділами підтверджується сучасною практи-
кою, де дрони, супутникові системи та наземні 
сенсори інтегруються в єдині інтелектуальні комп-
лекси. Такі рішення, як FireAI, OVERWATCH та 
ALERTCalifornia, демонструють, що ШІ здатний 

не лише здійснювати моніторинг розвитку пожежі, 
але й забезпечувати оперативне картографування, 
раннє виявлення загроз та підтримку координації 
ресурсів. На практиці це дає змогу скоротити час 
реагування, зменшити площу пожежі та знизити 
ризики для життя людей і довкілля. Автомати-
зація на основі алгоритмів машинного навчання 
суттєво підвищує ефективність гасіння, роблячи 
дрони активними учасниками операцій, які само-
стійно приймають рішення в реальному часі.

Математичне моделювання процесів навчання 
дронів у такому контексті природно реалізується 
через марковські процеси прийняття рішень. Ця 
модель описується п’ятьма ключовими елемен-
тами: простором станів, простором дій, функцією 
переходів, функцією винагороди та коефіцієнтом 
дисконтування. Вона дає можливість формалізу-
вати складну динаміку поширення пожежі та взає-
модію дронів із середовищем. Особливе значення 
має функція винагороди, яка поєднує ефектив-
ність пригашення, витрати ресурсів і показники 
безпеки, забезпечуючи баланс між цими супер-
ечливими критеріями. Таким чином, марковська 
модель є теоретичним фундаментом для побу-
дови ієрархічних алгоритмів підкріплювального 
навчання, що робить застосування ШІ у сфері 
пожежогасіння науково обґрунтованим і прак-
тично реалізованим.
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