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FOR THE WAVE EQUATION WITH THE PIECEWISE CONTINUOUS DISTRIBUTION
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A new solving scheme of the general first boundary value problem for a hyperbolic type
equation with piecewise continuous coefficients and stationary heterogeneous was proposed and
justified. In the basis of the solving scheme these is a concept of quasi-derivatives, a modern theory
of systems of linear differential equations, the classical Fourier method and a reduction method. The
advantage of this method lies in a possibility to examine a problem on each breakdown segment and
then to combine obtained solutions on the basis of matrix calculation. This approach allows to use
software tools for the solution.
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NPAMUA METO/I JOCAIKEHHA KOJJUBHUX IMTPOLECIB JIJISI XBUJIBOBOI'O
PIBHAHHA 3 KYCKOBO-HEIIEPEPBHUM PO3IIOAIJIOM ITAPAMETPIB

3anpomnoHoBaHO Ta OOIPYHTOBAHO HOBY CXEMY PO3B’SI3yBaHHS 3arajbHOI IMEpINOi KpaioBOi
3a7avi sl pIBHAHHS TinepOOIiYHOTO THITY 3 KyCKOBO-HETIEpEpBHUMH Koe(illieHTaMH Ta cTalioHap-
HOIO HEOJHOPIIHICTIO. B OCHOBY cXeMu po3B’si3yBaHHs IMOKJIAJACHO KOHIIEMIIII0 KBa3iMOX1IHUX, CY-
YacHY TEOPil0 CUCTEM JIIHIHHUX Tu(epeHLiaIbHIX PiBHIHb, a TAKOXK KiIacudHui Metoq Dyp’e Ta me-
Tox penykiiii. [lepeBaroro MeTory € MOKIIMBICTh PO3IIIHYTH 33/1a4y Ha KOYKHOMY BiAPI3KY PO3OHTTS,
a MOTIM Ha OCHOBI MaTPUYHOTO YMCIICHHS 00’ €HATH OTPUMaHi po3B’A3KH. Takuil miaxin JA03BOJISIE
3aCTOCYBATH MPOTrpaMHi 3ac00U 710 TIPOIIECy BUPIIIICHHS 3a/1a41 Ta rpadigHoi UtrocTpariii po3B’s3Ky.

Knwuoei cnoea: xpazinudepeHiianbae piBHAHHS, KpaiioBa 3a1ada, Matpuus Ko, 3a1aya
Ha BJIaCHI 3Ha4YeHHs, MeTo]] Dyp’e Ta METO BIAaCHUX (PYHKITIH.

Introduction

The main methods for solving nonstationary boundary value problems are the separation of
variables method, Green’s function method, method of integral transforms, approximate methods
and numerical methods.

The scheme proposed in this article belongs to the direct methods for solving boundary val-
ue problems for hyperbolic type equations. In the basis of the solving scheme these is a concept of
quasi-derivatives [5] that allows to by pass the problem of multiplication of generalized functions.

First of all, a mixed problem for the heat equation with piecewise continuous coefficients by
the general boundary conditions of the first kind [6] was solved.

This article examines the general first boundary value problem for a hyperbolic type equa-
tion with piecewise continuous coefficients and stationary heterogeneous. The usage of the reduc-
tion method for solving this problem reduces the possibility to find the solution of the stationary
inhomogeneous boundary value problem with the initial boundary conditions and the mixed prob-
lem with the zero boundary conditions for an inhomogeneous equation.
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I. Results and discussion.

Let 0=xp<x <Xxp<...<Xj_; <X; <Xj41...<X,_1 <X, =/ — arbitrary partition of the seg-
ment [0;/] of the real axis Ox into n parts.

Let’s declare the main designations:

i . . . Lxe[x,x,1),
6; — characteristic function of the interval [x;;x;,;), thatis 6, (x)= i=0,n—1.
O,x & [xl-,xl-+1),

n—1 n—1 n—l1
Remark 1. If a; = Zahﬂl— , ay = Zazlﬂi , then aj-a, = Zah- -ay;0; . In particular, if
i=0 i=0 i=0
n—1 1 n—1
a:ZaiHi, then — = Zai_lﬁi.
i=0 4 =0
Let
n—1
r(x0)= 2506, () € Clxixiy), 1(x)>0;
i=0
n—1
A(x) =D A(x)6;, (%) € Clxgsxi4y) > 4(x)>0;
i=0
n—1 n—1
f(x)=gx)+s(x)= z g;(x)0; + Z 5;0;(x—x;), where g;(x) —function on the interval [x;;x,,1),
i=0 i=1

s; —real numbers, 0; =9;(x—x;) — 0 - Dirac’s function with a carrier at the point x = x;.
Let’s examine the general first boundary value problem for a hyperbolic type equation
2
ou 0

r(x)yza(l(x)g—zj+f(x), xe(xp;x,), t €(0;+0), (1)

with the boundary conditions
u(xp,t)= t),
{ (x0,8) =y () (< [0:4+50) 2
u(x,,t) =y, (1),
and the 1nitial conditions
u(x,0) = @y (x),

% 0=, L 3)

where y (1), v,(t) € c? (0;+0), @y(x), @(x) — are piecewise continuous on (xp;x,,) .
The method of reduction for finding a solution of the problem is described in detail in [1, 7,
8]. In accordance with this method we can find a solution of the problem as a sum of two functions
u(x,t) =w(x,t)+v(x,t). 4)
I1. Building the function w(x,?).
Let’s define a function w(x,¢) as a solution of a boundary value problem

(Aw,)y ==1(x), )
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{W(Xo,t) =¥ (t)’ c [0’ +oo) ) (6)

w(x,, 1) =y, (1),
In the basis of the solving method of the problem (5), (6) is the concept of quasi-derivatives
[4].

: 7 mM_ g ool O] 52 °
Let’s introduce the vectors W = , where w'=Aw, , G= , Si= ,
will -g(x) —;

N

S = ZSZ- -0;. Using these definitions, the quasi-differential equation (5) reduces to the equivalent
i=1

system of differential equations of the first order

1

— 0 —|— — —

W, = AW+G+S. (7)
0 0

As a solution of the system (7) we take a vector function W(x,t) that fulfils the system (7)

almost everywhere.
Boundary conditions (6) can be written down in vector form

P-W(xg,)+ QW (x,,1) =T (1), (8)

1 0 0 0) = t
where P = ,0= ,IT(t)= Vo(®) .
0 0 10 10
Let w;(x,2), w (x t) and g;(x) be defined on the interval [x;;x;,;) . Let’s define

w(x,1) = Z Wy (x,0)6; ©)
i=0
On the interval [x;;x;,;) the system (7) is represented as

' 1
PR

Let’s examine a homogeneous system that corresponds to the system (10)

w; ' 0 1
) )

The Cauchy matrix B;(x,s) of such a system is represented as

def
where 5y = 0.

1 b'(X,S) p dZ
Bl-(x,s):(o ’ | j,where bi(x,s)zgﬂi(z) (see [3]). (11)
Let’s define (for an arbitrary k >1i)
def
B(xp,x;) = By (g, X 1) B (X1, X 2) -~ By (X415 %) (12)

The structure (11) of the matrices B; (x,s) allows us to define the structure of the matrix (12)
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k-1
1 b, (x,. 1,x
B(x,x;) = ,nZ::l o1 Xm) ,
0 1

def
besides that B(x;,x;) = E, where E is an identity matrix.

The solution of the system (10) on the interval [x;;x;,;) is

X
Wi(x,t) = B;(x,%) Pi + [ Bi(x,5)-Gi(s)ds, (13)
Xi
where P; isa yet unknown vector.
Similarly on the interval [x;_;;x;)
X
Wio1(x,0) = By (x,%;1)- Pict + | Bi_y(x,5)-Gi-1(s)ds. (14)
Xi-1
At the point x = x; the conjugation condition has to be fulfilled that is Wi (x;,t) = Wi (x;,0)+ Si [9].
As a result we get a recurrence relation

X; . _
Pi = By (%, %) Pict + | Biy(x;,5)- Gi-i(s)ds +Si. (15)
Xi-1
By the method of mathematical induction from (15) the following is received

—_ J— ! —_
Pi :B(x,-,xo)-Po-i-ZB(xl',xk)Zk, (16)
k=0
_ X _ _ . _ def _ _ def _
where Zi = I Bi_1(x,8)-Gi-1(s)ds+ Sk, k=1,n—1, note that Zo = 0, S, = 0;

Xk-1
Py — is the initial (unknown) vector.
In order to find Po the boundary conditions (8) should be used, where we define

_ def __
W(Xo,l) = P(),

_ def __ _ *n _
W (yt) = W1 () = By (% Xy -)Pit + | By (3,,9) G- (s) ds =

Xp—1

—_— n —_—
= B(x,,,xy)Po + z B(x,,x;)Z .
k=0

—_— n p— —
Then [P+ 0B(x,,,xy)]Po + QO z B(x,,x;,)Zi =T, and as a result
k=0

Po :[P+Q-B(xn,x0)]_1-(l:—Qi B(xn,xk)fkj. (17)

k=0
Let’s evaluate
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n—1
1 0
_ 1 0Y (0 0)[1 D by(xperXn)
1_ m \Xm+1>Xm _
[P+Q-B(x,,x)] = (O Oj+(1 Oj. 0 =l 1 11
0 1 Op Oy
n—l1 def
where o, = z by, (x,11-%Xp,)» 09 = 0;
m=0
- & — ) (0 0)¢& % — —
F—QZB(xn,xk)ZF(WO j—( jZB(xn,xk) jBk_l(xk,s)-Gk_l(s)dHSk .(18)
k=0 va@) \1 0);5

Xk-1
Let’s write down the right side part (18) in a matrix form

X, _ _ Xy 0 0
JBk_1(xkas)‘Gk_1(S)dS+Sk= J‘ ((1) bk—l(lxk,s)],[_gk I(S)]ds+(_SkJ=

X1 X1

Xk
— | b1 Ger9) - g (5) s
Y def ( T (x) J _
=Zk;

I/[clll (xk) — Sk

X
- j 8j—1(5)ds =5,

Xie—1

n—l1
iB(x x)( Tt (k) J_Z": 1 me(xm+l,xm)[ Ly (%) J_
ns>k = ok _

1 1
k=0 IJE_]I(xk)_Sk k=0 . I ][cll(xk)_sk

n n—1
5 (1 0+ (D -5 5 b ()]

_ | k=0 m=k

n
> ([l[clll(xk)_sk)
k=0
Thus, we receive

f_Qi B(xnoxk)zk =

k=0
wo(t)
- n 0 p-l : (19)
W@ =D | I o)+ (2 () =51+ D by (K15 X))
k=0 m=k
Let’s substitute (19) to (17)
wo(t)

Dn n n—1
Pomlvn@=vo® Ll o+t ) -50- 3 b o) || 00

Oy Oy k=0 m=k

Based on the formulas (13), (16), (20), after performed transformations an image of the vector
function W;(x,t) on the interval [x;;x; ;) is received
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Wi(x,t) = Bl-(x,xl.)-(B(xi,xo)-l_Do + ZI: B(xl-,xk)fk]+ j Bl-(x,s).ai(s)ds =
k=0

_ 1 bl'(x,xi)+0i F0+
0 1

X

i i-1 i
> (Ik_l )+ () =50 by, (xmﬂ,xm)] +b;(x,x) (J,EI_]I(xk) 5 ) +1;(x)

k=0 .m:k k=0 .21)

+
1
> (% o= st )+ 110y
k=0
The first coordinate of the vector W; (x,t) in (21) 1is indeed the searched function w;(x,?).
Therefore

wi(x,£) = 1//0(;)+(b,.(x,xi)+ai)-w—i(bi(x,xi)+ai)x
O

n n

n n—1
x> {lk_l )+ ) =50 > by, (xmﬂ,xm)J +

k=0 m=k

i i—1 i
+2 (Ik_l )+ () =50 3 by (xmﬂ,xm)] (o) Y (1 () = )+ (0. 22)
k=0

k=0 m=k
By substituting the expression (22) into (9), the solution on the whole interval [x;x,,] is re-
ceived.

I11. Building the function v(x,?).
Let’s write down a mixed problem for the function v(x,?). Substituting (4) into (1) and con-
sidering that the function w(x,#) fulfills (5), an inhomogeneous equation is received
o*v 0 ov 0w
r(x)———| A(x)— |=—r(x)—, xe(xy;x,), t €(0;+0). (23
) ax( ()&J (DT X, 1€ @) (23)
Let’s substitute (4) into the initial conditions (3). Initial conditions for the function v(x,?) are

received
def
v(x,0) = @y (x) —w(x,0) = Dy(x),
def x €[xy;x,]. (24)

ov ow -
E(x,O):(ol(x)—E(X,O) = @(%),

Since the function w(x,?) fulfills the boundary conditions (6), than from (4) the boundary
conditions for the function v(x,¢) will be the following.

V()CO, t) = 07
v(xn 2 t) = O’
Therefore under the condition that the solution w(x,¢) of the problem (5), (6) is known, the

t € [0;+00). (25)

function v(x,?) is the solution of the mixed problem (23)-(25).
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IV. The Fourier method and the eigenvalue problem.
1. Expansion by eigenfunctions.

Let’s find the solution of corresponding homogeneous equation for the equation (23) omnHopi-
JTHOTO PiBHSHHS

o*v 0 dv
r(x)—=—| A(x)— |, 26
0 &(U&J (26)
that fulfills boundary conditions (25). Now let’s find its nontrivial solution
v(x, 1) =T(1)- X(x), 27)

where T(¢), X(x) — are yet unknown functions [1].
By substituting (27) into (26) and executing division both of parts (26) on r(x)-T(¢)- X (x)
the quasi-differential equation is received
(A(0)X'(x)) +@*r(x)X(x)=0, (28)

where @ is a parameter.
Let’s substitute (27) into the conditions (25) and take into account that 7'(¢) #0. The following

boundary conditions are received
X(x9)=0,

X(x,)=0.
The problem (28), (29) is the eigenvalue problem. The properties of the eigenvalues @), and

(29)

the eigenfunctions X (x, @y ) of the problem (28), (29) are described in detail in [8]. The expansion

by the eigenfunctions X (x, @y ) of function F'(x) which fulfills some conditions is the following

F(x)=) F, - Xp(x,0), (30)
k=1
where the Fourier coefficients Fj, are computed by the formulas
1 F
F= 'JF(X)'Xk(xawk)'F(X)dx. 31)
”Xk” Xo
Let’s note, that
xn
2
|Xe ) = [ X7 (x.o) r(x) . )
X0

Let’s define conditions, which fulfill function F'(x). Let’s consider, that F'(x) is an absolute-
ly continuous function that has different analytical expressions on each of the intervals [x;;x;,1),
which allows the image
n—1
F(x)=) Fi(x)-6, (33)
i=0
on the interval [x(;x,,].
Functions of the type (33) are piecewise-continuous functions with the gaps of the first-type

in the points x;, i =0,n—1. Functions of the type (33) are added, multiplied and integrated the fol-
lowing way:
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n—1 n—1
if (x)=Y F;(x)-6;, F,(x)=)_F;(x)-0,, then

0 ;:? n—l1
REFy =) (Fi£Fy)60, F-F=)(F Fy)6,

xnl 0 n—lxnl "

[ AR r@)de =Y [ Fix): Fy(x)-5(x) d, (34)

X i=0 Xy
Xp n—1%u

|Ff = | FE @) r() de= Y [ FE()r(x) dv, k=1 (35)
Xo =0 x,

The expression (34) is the dot product of the functions F(x) and F;(x). The expression (35)

is the norm square of the function Fj (x) with the weight r(x).
Let’s define

n—1

Xp(x,0) = D Xy (x, )6 (36)
i=0
Then for the Fourier coefficients F, and for the norms squares of functions X, (x) from the
(31) and (32) the following is received
1 n—1%Xi+1
Fk: 2'2 j F}(x)'in(xaa)k)'rz(x)dxa
Jxel™ =0 %
n—1%Xix1
[ =Y [ xZix@p)-n(x) dx.

=0 x,

2. Constructional approach to building eigenfunctions.
. o [ - [ X .
Let’s introduce a quasi-derivative X'! = AX', a vector X = and matrices

xll
1
A(x) = A |. Now let’s reduce a quasi-differential equation (28) to the system of the first
2
-o°r 0

order differential equations

X = AX . (37)
The boundary conditions (29) are the next
PX(xp)+0X(x,)=0. (38)

Let’s write down the corresponding system to the system (37) on the interval [xl-,xl- +1) ina

following way

Xi=4-Xi,i=0n-1, (39)
o L
where 4;(x) = 4
—w’r 0
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The Cauchy matrix of the system (39) has the following structure @i(x, S, @)

def i
B(x;, %9, ) = Hoﬁi—j(xi—jﬂaxi—j’a))-
j:

Let’s define the analog of Cauchy matrix on the whole interval [x;x,, ]

def n—1
B(x,x0,0) = Y Bi(x,x,,0) B(x;, 0, )03 (40)
i=0
def w ®
Bx, x0,) = (511( ) bia( )j. @
by(@) by (@)
The nontrivial solution }(x, ) of the system (37) can be found as
X (x,0)=B(x,xp,0) - C, (42)
— (C
where C = (Clj 1S some nonzero vector.
2
The vector function }(x, ) has to fulfill the boundary conditions (38). That is
P-X(x0,0)+ Q- X (x,,0) =0,
[P-%(xo,xo,a))+Q-%(xn,xo,a))]-(_i =0.
Taking into consideration that @(xo,xo, w) = E , the following equation is received
[ P+0-B(x,,x0,0)|-C=0. (43)

The nonzero vector C exists in (43) if the validity of the following condition is necessary and
sufficient

det[P+Q~@(xn,x0,a))]=O. (44)

Let’s concretize the left part of the characteristic equation (44), taking into consideration the
matrices P, O and (41)

_ 1 0 0 0 . b(w) by(o) _
det[P+Q-@(xn,x0,a))}—de‘{(o OJ+ (1 OJ (521(60) bzz(a))ﬂ_

1 0
) det[(bn(w) b12(a))ﬂ ~onl():

Let’s make the following statement.
Statement 1. Characteristic equation of the eigenvalue problem (28), (29) is the following

by (@) =0. (45)
As known [8], the roots @ of the characteristic equation (45), that are also eigenvalues of the
problem (28), (29), are positive and different.
In order to find the nonzero vector C let’s substitute w;, with @ into the equation (43). Then
the following vectorial equality is received

o oo/l o)
bi(@p) ba(wp)) (Cy) \0)

that is equivalent to the system of equations
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{Cl " (46)
by(ay)-Cy+byy(ay)-Cy =0.

Since the determinant of this system b,(w) =0, then the system (46) has the following solutions
— (0 —
¢, =0, C, €1 \{0} . By introducing, for example C, =1, C :(J is received. Let Xk (x,w;) be a

nontrivial eigenvector that corresponds to the value of @y, .

Statement 2. The eigenvectors of the system of differential equations (37) with boundary
conditions (38) have the following structure

— 0
Xk(x,a)k):@’(x,xo,a)k)-(lj, kel .

Consequence. The eigenfunctions X; (x,w;) as the first coordinates of the eigenvectors

Xk (x, wy, ) can be written down as
0
X (x,a) = (1 0)-@’(x,x0,a)k)-(J, k=1,2,3,.... (47)
In particular, since the X (x,®;)1s (36), then from (40) and (47) follows that
0 -
in(xaa)k) = (1 0)'ﬁi(xaxiﬂa)k)'@(xi>x05a)k)'(lja i=0,n—1. (48)

V. Building a solution v(x,7) to the mixed problem (23) - (25).

In order to solve the problem (23) - (25) let’s apply the eigenfunctions method [6], what
means that the problem’s solution (23) - (25) can be found in a following form

v(x,0) =Y T (1) Xy (x, ), (49)
where 7}, (¢) are unknown functions that will ‘tfe: 1later defined.
Since % is in the right side of equation (23) let’s expand it into the Fourier series by the ei-
genfunctions X (x, ;) of the boundary problem (28), (29)
6;7;” = kZl wi (1) X (x, @) (50)

By substituting the expression (49) into (23) and taking into account (50), the following
equality is received

r(x)- 2T (£) Xp(x, 00) = sz(f)'(iXk'(x, a)k)) —r(x)- Y Wi (1) X (x,0p).
k=1 k=1 k=1
Considering that the eigenfunctions X (x, ) satisfy the equation (28), we get an equality

r(x)- DT (1) X () = —r(x) Y & - X (5, )T () = r(x)- D we () Xy (x,0).
k=1 k=1 k=1
Let’s divide on r(x) >0 previous equality. We received
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0

" 2
Z[Tk (t)+a)k-Tk(t)+wk(t)]Xk(x,a)k):0. (51)
k=1
By equating the Fourier coefficients (51) to the zero the differential equations are received
T, () + o} T, (1) =—wi (1), k=1,2,3,.... (52)
The general solution of each of the differential equations (52) is
t
T, (t) = a; cos ayt +d, sin a1 _ L j sin @y (1 —s)-wy (s) ds , (53)
) 0

where a;,, dj, are unknown constants [2].

t
Let’s declare I(¢) = LJ'sin @y (t—5)-wy (s) ds . Note that /(0)=0, 7;(0)=0.

) 0
In order to find the constants a; , d), let’s expand the right parts of the initial conditions (24)

into the Fourier series by the eigenfunctions X, (x, @)

Do(x)=D Doy - Xp(x, ), (54)
k=1
0
O (x)=) Dy Xp(x, ), (55)
k=1
where @, , @, are the corresponding Fourier coefficients.
From (53) follows that
Tk(O):ak, (56)

T, (t) = —ag o sin oyt +d,ay cosapt -1, (1),
SO
T, (0)=d, o . (57)
From (49), (54) and the first condition in (24) the following is received

0 0
D Ti(0)- Xy (x,a) = D Pt - Xy (x, ) . Now using (56) we receive T3 (0) =a; =Dg . .
k=1 k=1
Analogically, from (49), (55) and the second condition in (24)

ZTk'(O)-Xk(x, ) = Zq)l © Xy (x,0) is received. Using (57) we find Tk'(O) =dyw, =Dy, or
k=1 k=1
dk = —(Dl k .

Wy

Thus, a solution of the mixed problem (23) - (25) is received in a form of the series

> Dy ‘.

v(x,t) = z D rcoswt+ LK sin a)kt—Ljsm @y (t=5) - wi(s)ds |- Xy (x,0) .
,

k=1 k @k
n—1
Considering (36) and that v(x,t)=2vl-(x,t)-6’,-, where v;(x,t) are defined on the interval
i=0

[X:3%;41) » we receive
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0 t
()
v;(x,0) = Z D ,c0s Wyt +—K sin w1 —Lj‘sin @y (t=5) - wi(s)ds |- X (x,0), (58)
=1 W Dk
where the functions X;;(x, ;) are computed by the formula (48).

Considering (22), (58), the solution of the problem (1) - (3) is received

n—1
u(x,t)= Z[WI-(X, 1)+ v,-(x,t)] -6;.
i=0

Conclusion.

The theorem about the expansion by the eigenfunctions is adapted for the case of differential
equations with piecewise constant (by the spatial variable) coefficients.

Explicit formulas for finding the solution and its quasi-derivatives for any partial interval of
the main interval that are valid for arbitrary finite numbers of the first type break points of the earli-
er referred coefficients are received.

This scheme of problem examination was considered in a case of rectangular Cartesian coor-
dinate system. However, it remains valid in a case of any curvilinear orthogonal coordinates. The
advantage of this method lies in the possibility to examine a problem on each breakdown seg-
ment and then to combine obtained solutions on the basis of matrix calculation. This approach al-
lows the use of software tools for solving the problem. The received results have a direct applica-
tion to applied problems.
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