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ШТУЧНИЙ ІНТЕЛЕКТ В ЕКОЛОГІЧНОМУ МОНІТОРИНГУ: 

СИСТЕМАТИЧНИЙ ОГЛЯД МЕТОДІВ, ЗАСТОСУВАНЬ ТА 

ВИКЛИКІВ 
 

Проблема. Зростання антропогенного навантаження та зміни клімату підвищують потребу у високоточному 

моніторингу екосистем. Поєднання супутникового дистанційного зондування Землі (Earth observation, EO) та 

методів штучного інтелекту (AI) відкриває можливості для оцінювання стану водних, наземних, прибережних і 

міських систем, а також атмосферного середовища; однак зберігаються виклики невизначеності, гетерогенності 

даних і обмеженої переносимості моделей між регіонами. 

Мета. Систематизувати сучасні підходи застосування методів машинного навчання для прогнозування 

стану довкілля у ключових доменах і узагальнити діапазони точності з урахуванням чинників результативності 

моделей та типових обмежень. 

Методи дослідження. Виконано цілеспрямований пошук публікацій у базах Scopus, Web of Science Core 

Collection, IEEE Xplore, ACM Digital Library та Inspec, а також у журналах видавництва MDPI. Для емпіричних 

робіт охоплено період 2021–2025 рр.; фундаментальні й стандартотворчі джерела враховано без часових 

обмежень. Здійснено наративний синтез із тематичним поділом; ключові результати подано у таблицях і блок-

схемах із фокусом на сенсорах, наборах ознак та схемах просторово-часової валідації. 

Результати. Узагальнення включених досліджень показує, що для задач класифікації земного покриву 

загальна точність (overall accuracy, OA) за сучасних протоколів варіює у межах 70–96 % залежно від сенсорів, 

ознак і схем просторово-часової валідації. У задачах детекції об’єктів показник F1 (гармонійне середнє точності 

та повноти) становить приблизно 0,87 (зокрема, для високодетальної детекції кокосових пальм). Для оцінювання 

якості води за супутниковими предикторами спостерігаються значення коефіцієнта детермінації R2 = 0,93–0,96. 

В атмосферному домені моделі для приземних концентрацій NO2 досягають R2 близько 0,93, а для щоденного 

PM2.5 на решітці з просторовою роздільною здатністю 1 км — R2 близько 0,91. У прибережних зонах 

підтверджено ефективність трансферного навчання: включення ближнього інфрачервоного каналу (NIR) 

забезпечує середній приріст точності приблизно 19,3 %, причому комбінації NIR із видимими каналами 

демонструють найвищі підсумкові значення. Окремо систематизовано методичні напрями: класичні методи ML 

(random forest, RF; support vector machines, SVM), глибинні підходи (convolutional neural networks, CNN; 

трансформери), гібридні підходи та інструменти пояснюваності (SHAP), а також сфери застосування (land 

use/land cover, LULC; якість води; атмосферні забруднювачі; прибережні й урбаністичні сценарії). Зазначені 

діапазони відображають результати за конкретних сенсорних налаштувань і процедур валідації та не є 

універсальними для всіх регіонів і біомів. 

Висновки та конкретні пропозиції. Найвищі показники забезпечують мультимодальна інтеграція 

оптичних, радарних із синтетичною апертурою (SAR) та in situ даних, коректне просторово-часове розмежування 

навчання і тестування зі звітуванням невизначеності, а також стандартизовані ARD-потоки з прозорим 

походженням даних. Рекомендується уніфікувати протоколи валідації та звітування, формувати відкриті еталонні 

набори з незалежними тестовими вибірками, систематично перевіряти переносимість між біомами й розвивати 

гібридні, фізично обґрунтовані моделі. Для температурного картування доцільно використовувати теплові 

сенсори (Landsat TIRS, Sentinel-3 SLSTR), тоді як Sentinel-2 оптимальний для спектральних індексів і 

просторових трендів. 

Ключові слова: геопросторовий штучний інтелект, дистанційне зондування Землі, класифікація земного 

покриву, якість води, шкідливі цвітіння водоростей, атмосферні забруднювачі. 
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ARTIFICIAL INTELLIGENCE IN ENVIRONMENTAL MONITORING: A SYSTEMATIC 

REVIEW OF METHODS, APPLICATIONS, AND CHALLENGES 

 
Problem. The growth of anthropogenic pressures and climate change increases the need for high-precision 

ecosystem monitoring. The integration of satellite Earth observation (EO) and artificial intelligence (AI) methods enables 

assessment of aquatic, terrestrial, coastal, and urban systems as well as the atmosphere; however, challenges persist 

regarding uncertainty, data heterogeneity, and limited model transferability across regions. 

Objective. To systematize contemporary approaches to applying machine-learning methods for forecasting 

environmental conditions across key domains and to synthesize accuracy ranges while accounting for model performance 

drivers and typical limitations. 

Methods. A targeted search was conducted in Scopus, Web of Science Core Collection, IEEE Xplore, ACM Digital 

Library, and Inspec, as well as in journals published by MDPI. Empirical studies from 2021 to 2025 were included; 

foundational and standards-setting sources were considered without time limits. A narrative synthesis with thematic 

structuring was undertaken; key results are presented in tables and flowcharts with a focus on sensors, feature sets, and 

spatiotemporal validation schemes. 

Results. Synthesis of the included studies shows that, for land-cover classification, overall accuracy (OA) under 

current protocols ranges from 70–96%, depending on sensors, features, and spatiotemporal validation schemes. For object 

detection, the F1 score (harmonic mean of precision and recall) is approximately 0.87 (including high-resolution detection 

of coconut palms). For water-quality estimation from satellite predictors, R2 = 0.93–0.96. In the atmospheric domain, 

models for ground-level NO2 concentrations achieve an R2 of approximately 0.93, and daily PM2.5 on a 1 km grid achieves 

an R2 of approximately 0.91. In coastal zones, transfer learning with inclusion of the near-infrared band (NIR) yields a 

mean accuracy gain of approximately 19.3%, with combinations of NIR and visible bands achieving the highest overall 

values. Methodological directions are systematized separately: classical ML (random forests, RF; support vector 

machines, SVMs), deep learning (convolutional neural networks, CNNs; transformers), hybrid approaches and 

explainability tools (SHAP), as well as application areas (land use/land cover, LULC; water quality; atmospheric 

pollutants; coastal and urban scenarios). The reported ranges reflect results obtained under specific sensor configurations 

and validation procedures and are not universal across all regions and biomes. 

Conclusions and specific proposals. The highest performance is achieved with multimodal integration of optical, 

synthetic-aperture radar (SAR), and in situ data; proper spatiotemporal separation of training and testing with explicit 

uncertainty reporting; and standardized analysis-ready data (ARD) pipelines with transparent data provenance. We 

recommend standardizing validation and reporting protocols; developing open benchmark datasets with independent test 

sets; systematically evaluating transferability across biomes; and advancing hybrid, physics-informed models. For 

temperature mapping, thermal sensors (Landsat TIRS, Sentinel-3 SLSTR) are advisable, whereas Sentinel-2 is optimal 

for spectral indices and spatial trends. 

Keywords: geospatial artificial intelligence; Earth observation; land-cover classification; water quality; harmful 

algal blooms; atmospheric pollutants. 
 

Вступ. Глобальні екологічні проблеми 

зростають разом із розвитком індустріалізації 

людства. Одним із головних способів оцінити цей 

вплив залишається екологічний моніторинг. Для 

зниження антропогенного впливу важливо 

створювати стратегії раціонального природо-

користування на основі сучасних технологій. 

Розвиток технологій дозволяє формувати нові 

підходи та методи у спостереженні за довкіллям. 

Такий оперативний моніторинг повинен стати 

основою для оновлення управлінських стратегій у 

галузі ресурсокористування. Традиційні методи, 

зокрема польові дослідження та лабораторні 

аналізи, часто є обмеженими просторово та 

повільними [9]. Їхня ефективність знижується 

через стрімке зростання обсягів даних. Класичні 

методи обробки не встигають за темпами змін, що 

перетворює самі дані на бар’єр для своєчасного 

реагування [34]. Тому все більше уваги привертає 

залучення новітніх цифрових технологій, серед 

яких Earth Observation (EO, дистанційне 

зондування Землі) та алгоритми штучного 

інтелекту (ШІ). 

Технологічна парадигма сьогодення 

визначає спосіб організації моніторингу. Центра-

льним напрямом розвитку стає поєднання ШІ та 

дистанційного зондування. Використання 

машинного навчання та великих обсягів даних у 

природокористуванні зростає особливо швидко 

після 2012 року і формується як основа для 

прогнозних моделей [41] Перспективу подальшої 

інтеграції цих підходів описують у дослідженнях 

наступного покоління геопросторового штучного 

інтелекту (GeoAI), що об’єднує геоінформаційні 

системи (ГІС), супутникову аналітику та 

алгоритми штучного інтелекту [38]. Також має 

розвиток метод врахування просторової 

неоднорідності за допомогою мета-навчання, що 

продемонстрував прикладне значення для аналізу 

спектральних ознак у дистанційному зондуванні 
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[63]. Практичність поєднання супутникових 

даних і алгоритмів машинного навчання для 

виробничих завдань підтверджена у праці про 

автоматизоване розпізнавання сільськогоспо-

дарських культур в Україні [36], а інтеграція 

машинного навчання (ML) із супутниковими 

даними (зокрема Sentinel-1) дозволяє 

автоматизовано виявляти антропогенно 

пошкоджені агротериторії у воєнний час [33]. 

Серед ключових можливостей ШІ в 

моніторингу є прогнозування. Моделі, навчені на 

великих даних, дозволяють відтворювати сценарії 

майбутніх змін у сфері водних ресурсів з 

урахуванням антропогенного впливу [28]. Для 

українських річкових систем продемонстровано 

застосування ML-моделей (зокрема алгоритмів 

випадкового лісу (Random Forest, RF)/ 

екстремального градієнтного бустингу (Extreme 

Gradient Boosting, XGBoost)) у завданнях гідро-еко 

моніторингу та оцінки стану водних об’єктів [6]. 

Подібні підходи ілюструють, як ШІ поступово 

переходить від інструмента обробки до компонента 

систем підтримки управлінських рішень. 

Але навіть за наявності сучасних інструментів 

залишаються проблеми. Даних стає настільки 

багато, що вони самі по собі перетворюються на 

бар’єр. Якщо обробку відкладати або здійснювати 

без автоматизованих алгоритмів, втрачається час і 

критичний момент для реагування [46]. 

Автоматичні інтерпретатори досі дають похибки у 

класифікації, а нестача фахівців лише підсилює цю 

проблему. За такого навантаження навіть сучасні 

системи моніторингу без автоматизації часто 

формують звіти вже після настання подій. Потреба 

в оперативних алгоритмах підтверджується 

українськими роботами з автоматичного виявлення 

пошкоджень на агроландшафтах у масштабі країни 

[33] та поточними доповідями про оперативний 

моніторинг наслідків бойових дій у агросекторі [10]. 

Штучний інтелект і супутникові дані ще не 

набули статусу звичної практики. Водночас 

кількість досліджень щороку зростає. Спершу 

аналізували окремі знімки, тепер розробляють 

моделі для прогнозування змін цілих екосистем 

[41]. Розвивається й GeoAI, де поєднують ГІС, 

машинне навчання та супутникову аналітику [38]. 

На глобальному рівні діють програми 

моніторингу якості повітря, зокрема ініціативи 

Програми ООН з навколишнього середовища 

(UNEP) [57]. Для парникових газів застосовують 

спеціалізовані ініціативи та служби, зокрема 

Integrated Global Greenhouse Gas Information System 

(IG3IS) під егідою World Meteorological Organization 

[WMO] [61], Copernicus Atmosphere Monitoring 

Service [25,  43] та європейську CO2 Monitoring & 

Verification Support (CO2MVS), що розвивається в 

межах Copernicus [27]. Критично важливою є також 

наземна мережа Total Carbon Column Observing 

Network (TCCON) для високоточних колонкових 

спостережень CO2 і CH4 [62]. 

Попри прогрес, прозорість і пояснюваність 

моделей залишаються серед ключових викликів 

GeoAI. Автори дослідження [38] виділяють 

«інтерпретований і пояснюваний GeoAI» як 

пріоритетний напрям майбутніх робіт. Інтеграція 

даних із різних джерел часто ускладнює аналіз через 

просторову неоднорідність. [63] показують, що 

використання просторово‒чутливої архітектури, 

адаптованої до таких відмінностей, може значно 

покращувати прогностичну точність. Це доводить, 

що навіть складні моделі потрібно налаштовувати з 

урахуванням просторової структури, щоб уникнути 

не лише «чорних піків», а й неправильних загальних 

висновків. 

У цьому дослідженні проаналізовано, як 

застосовують штучний інтелект у моніторингу 

довкілля. Розглянуто приклади використання 

алгоритмів ML, глибинного навчання (DL) та 

просторово орієнтованого підходу (GeoAI) для 

оцінки стану атмосфери, наземних систем, 

водних систем, лісових екосистем й ландшафтів. 

Метою роботи є систематизація сучасних 

підходів, узагальнення діапазонів точності та 

визначення ключових обмежень для подальших 

досліджень. Для досягнення поставленої мети 

сформульовано такі завдання: 

1) Виконати цілеспрямований пошук і відбір 

рецензованих публікацій, що висвітлюють 

застосування ML/DL/GeoAI в екологічному 

моніторингу, з фокусом на доменах LULC, водні 

системи, атмосферне повітря, прибережні та 

урбанізовані території; 

2) Систематизувати типові комбінації «домен 

сенсори моделі схеми валідації» та узагальнити 

діапазони ключових метрик точності (OA, F1, κ, 

R2, RMSE/MAE тощо) за включеними 

дослідженнями; 

3) Проаналізувати методичні чинники, що 

визначають результативність моделей (просторово-

часова організація даних, мультисенсорна 

інтеграція, баланс класів, схеми  

крос-валідації, застосування XAI), та виявити 

основні джерела невизначеності й обмеження 

переносимості моделей між регіонами та сезонами; 

4) На основі отриманих результатів 

сформувати узагальнену рамку використання 

штучного інтелекту в екологічному моніторингу з 

виділенням пріоритетних напрямів подальших 

досліджень і стандартизації (ARD-підходи, еталонні 

набори, гібридні та фізично обґрунтовані моделі, 

елементи пояснюваного ШІ).  

Наукова новизна статті полягає у крос-

секторальному узагальненні практик (від 

агроекології до урбанізації), порівнянні 
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ефективності різних алгоритмів та виявленні 

залежності точності не лише від моделі, а й від 

сенсора, попередньої обробки та специфіки 

завдання. 

У статті пропонується уніфікована рамка з 

трьох компонентів: завдання, сенсори, моделі, яка 

систематизує застосування ML, DL та GeoAI в 

екологічному моніторингу водних, атмосферних, 

наземних і прибережних систем. Подано перелік 

елементів звітування, що охоплює джерела даних 

і їх ARD-статус, схеми просторової і часової 

валідації, метрики з оцінкою невизначеності, 

засоби пояснюваного штучного інтелекту та 

перевірку переносимості. Також узагальнюються 

порівнювані діапазони точності між підгалузями і 

окреслюються пріоритетні прогалини, які 

визначають подальші напрями досліджень. 

Передумови: штучний інтелект у 

екологічному моніторингу. У сучасному 

екологічному моніторингу досі не сформовано 

уніфікованої парадигми застосування штучного 

інтелекту. Поширеним є використання ML, 

зокрема алгоритмів RF, методу опорних векторів 

(Support Vector Machine, SVM) та XGBoost. Такі 

методи не потребують надмірних обсягів даних, 

проте потребують ретельного відбору ознак. Саме 

тому їх застосовують у прогнозуванні змін 

земного покриву та аналізі кліматичних часових 

рядів [5]. Поряд із цим активно використовуються 

глибокі нейронні мережі, здатні самостійно 

виявляти просторово‒часові закономірності, 

неочевидні для традиційних методів. Згорткові 

нейронні мережі (CNN) ефективні для роботи з 

просторовими зображеннями, тоді як мережі 

довгої короткочасної пам’яті (Long Short-Term 

Memory, LSTM), які є різновидом рекурентних 

нейронних мереж (RNN), орієнтовані на часові 

ряди [37]. Для сучасних просторово‒часових 

задач у Earth Observation (EO) зростає роль 

трансформер‒архітектур [3, 64]. Актуальність 

класичних підходів теж зберігається: Random 

Forest і сьогодні демонструє високу практичну 

цінність у задачах класифікації земного покриву 

та прогнозуванні [5, 53]. У підсумку, класичні 

ML‒підходи залишаються ефективними для 

невеликих вибірок та завдань середньої 

складності, тоді як DL і трансформери поступово 

стають основою багатоканальних і просторово‒

часових застосувань. 

Окремим напрямом виступають гібридні 

системи. У межах таких підходів поєднують 

навчання на даних із формалізованими 

правилами, що допомагає відстежувати не лише 

статистичні залежності, а й смислові відношення. 

Це узгоджується з концепцією прагматичного 

GeoAI, де алгоритми інтегрують із сенсорними 

потоками та практиками прийняття рішень [47]. У 

ширшій перспективі GeoAI розглядають як 

інтеграцію ГІС, даних дистанційного зондування 

та алгоритмів ШІ для просторової підтримки 

управлінських рішень [56]. Таким чином, гібридні 

моделі підвищують інтерпретованість результатів 

і дозволяють поєднувати статистичні 

закономірності з управлінськими сценаріями. 

Питання точності алгоритмів у прогнозуванні 

екологічних змін залишається ключовим і для 

науки, і для практики. Попри поширення складних 

глибинних моделей, методи класичного ML 

зберігають значення, особливо у прогнозуванні 

змін земного покриву за мультиспектральними 

супутниковими даними, поєднаними з 

допоміжними предикторами [5]. Для часових рядів 

дедалі ширше застосовують CNN, LSTM та 

трансформери [3, 37, 64]. Актуальні огляди 

відзначають, що саме ці архітектури дозволяють 

виявляти як довгострокові тенденції, так і 

короткочасні екстремальні явища у довкіллі, що 

робить їх корисними для систем раннього 

попередження. 

Важливою проблемою залишається 

прозорість роботи моделей. Методи пояснюваного 

штучного інтелекту (explainable AI, XAI) 

дозволяють розкрити механізми формування 

прогнозу, зокрема застосовують SHapley Additive 

exPlanations (SHAP) для кількісної оцінки внеску 

ознак [1, 23]. У дослідженні [1] XAI використано 

для аналізу деградації лісів. Застосування SHAP 

надало кількісну інтерпретацію внеску 

середовищних предикторів у рішення моделі. У 

регульованих екосистемах доцільні гібридні 

підходи, орієнтовані на інтерпретованість [47]. На 

рівні ландшафтного аналізу графові моделі, 

зокрема графові згорткові мережі, покращують 

класифікацію завдяки врахуванню просторових 

зв’язків у гіперспектральних даних [22]. Отже, 

прозорість і пояснюваність сьогодні розглядають 

не як додаткову опцію, а як обов’язковий елемент 

інтеграції ШІ у моніторинг довкілля. 

У просторовому плануванні ШІ розглядають 

як інструмент стратегічної підтримки рішень у 

зв’язці з міськими цифровими двійниками. 

Інтеграція даних і моделювання в межах urban 

digital twins переводить аналіз від статичних карт 

до сценарного моделювання з урахуванням 

природних обмежень і соціально‒економічних 

умов, що підвищує обґрунтованість 

управлінських рішень [39]. Наприклад, система 

ще на етапі планування може оцінити вплив 

нового житлового кварталу на енергетичне 

навантаження та запропонувати альтернативний 

сценарій зі зниженими екологічними ризиками. 

Це свідчить про поступовий перехід ШІ від 

допоміжного інструмента аналізу до складової 

стратегічних систем управління. 

https://journal.ldubgd.edu.ua/index.php/index
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Інша група праць подає GeoAI як методику, 

де моделі безпосередньо пов’язують із сенсорами 

та управлінськими контурами: ШІ не лише 

«читає» карти, а вбудовується в процеси 

моніторингу та адаптації, наприклад у лісовому 

господарстві або плануванні стійкості регіонів 

[47]. Такі системи зазвичай спираються на дані 

дистанційного зондування Землі (ДЗЗ) як на 

основний, але не єдиний ресурс, їх доповнюють 

польові/натурні спостереження (in situ) та дані 

соціального сенсингу (social sensing). Це не 

окремі знімки, а часові ряди з різних сенсорів 

оптичних, радарів із синтезованою апертурою 

(SAR, Synthetic Aperture Radar), теплових, що 

дають змогу простежувати структуру об’єктів і 

їхню динаміку [11, 54]. Мультисенсорність 

забезпечує повніший опис екосистем, зменшуючи 

невизначеність прогнозів. 

На глобальних платформах на кшталт Google 

Earth Engine (GEE) такі підходи реалізують у 

планетарному масштабі [18], а сучасні огляди 

фіксують подальше зростання використання GEE 

[58]. Регулярність зйомки, репрезентативність і 

відкритість даних дозволяють оновлювати моделі 

майже в реальному часі, перетворюючи EO на 

інфраструктуру підтримки рішень [18]. Оптичні 

серії Sentinel-2 трансформують у тематичні 

продукти: індекси вегетації (зокрема NDVI) та 

карти просторових трендів для раннього 

виявлення відхилень і ризиків [14]. Водночас 

хмарність і лакуни погіршують фенологічні 

оцінки, тому застосовують часову та просторову 

інтерполяцію, злиття з SAR і глибинні 

реконструкції часових рядів [50]. Таким чином, 

комбінація оптики й SAR поступово стає 

стандартом у сучасних системах моніторингу. 

Технічні засади зйомки визначають обмеження 

й можливості аналітики. Полярні низькі 

навколоземні орбіти (LEO), на яких працюють, 

зокрема, Sentinel‒1 та Sentinel‒2, забезпечують 

високу деталізацію і глобальне покриття [11, 54]. 

Тоді як геостаціонарні орбіти (GEO), наприклад 

платформа GOES-R із приладом Advanced Baseline 

Imager (ABI), забезпечують безперервне 

спостереження фіксованих регіонів [48]. Оптичні 

сенсори залежать від хмарності та освітлення, тоді 

як SAR працює за будь‒якої погоди й часу доби. Але 

інтенсивні опади та радіочастотні завади можуть 

погіршувати якість сцени, що потрбіно враховувати 

під час інтеграції SAR‒даних у моделі [54]. Не менш 

важливою є інфраструктура зберігання та обробки 

даних. Формати та контейнери, що стали 

стандартом у науках про Землю: GeoTIFF 

(геоприв’язаний растровий формат) [40], netCDF 

(Network Common Data Form для багатовимірних 

наукових масивів) [45] і HDF5 (Hierarchical Data 

Format, версія 5) [15], забезпечують відтворюваність 

і масштабованість. Масштабні архіви супутникових 

даних та регулярні оновлення потребують підходів 

на кшталт Analysis Ready Data (ARD) [9, 13] і data 

cube [18, 34], які широко застосовуються у 

супутниковій аналітиці. Ці інфраструктури 

створюють основу для репродуктивності 

досліджень і глобальної масштабованості моделей. 

Окремий напрямок становлять синтетичні та 

генеративні EO-дані й аугментації. Дифузійні 

моделі підсилюють узагальнювальну здатність 

глибинних мереж і закривають прогалини в 

даних, що показано на прикладі доменно‒

специфічних генеративних моделей для 

супутникових зображень [32]. Завдяки таким 

підходам зменшується залежність від неповних 

або нерегулярних спостережень, що робить 

прогнози стабільнішими. 

Мультимодальна інтеграція оптики, SAR, 

даних із дронів і соціальних сигналів стає нормою 

завдяки трансформерам та механізмам уваги [3, 59]. 

Інтеграція з social sensing підсилює карти ризиків і 

реагування на НС, але потребує контролю якості, 

репрезентативності та зниження упереджень у 

даних [14; 65]. Ключовим є не кількість джерел, а їх 

просторово‒часова синхронізація та прозорі 

метадані. У результаті, саме мультиджерельність і 

якісна стандартизація визначають надійність систем 

екологічного прогнозування. 

Точність моделі це лише частина рівняння. 

Якість вхідних даних, їхня гетерогенність і 

нерегулярність визначають межі алгоритмів. 

Нерівномірність покриття між супутниковими, 

мобільними й польовими сенсорами потребує 

нормалізації шкал і метаданих перед злиттям [56]. 

У часових рядах хмарність і нерегулярність 

спостережень серйозно впливають на фенологічні 

оцінки [50], тоді як сучасні огляди систематизують 

підходи до видалення хмар і реконструкції серій. 

Прикладні дослідження на території України 

демонструють практичну значущість інтегрованих 

підходів для оперативної оцінки пошкоджень 

аграрних угідь від військових дій за даними 

Sentinel і методами ML [33]. Таким чином, 

ефективність прогнозних моделей визначається не 

лише алгоритмом, а й повнотою та якістю даних. 

Динаміка розвитку напряму фіксується й у 

тематичних оглядах 2023–2024 років. ШІ зміщує 

фокус від описових продуктів до прогнозної 

аналітики та підтримки рішень [56]. Класичні 

джерела [5; 18] залишаються рамковими, але 

доповнюються сучасними підтвердженнями 

методів та інфраструктур. У підсумку, сучасний 

екологічний ШІ можна розглядати як організовану 

систему, у якій поєднано алгоритми, сенсорні 

платформи та практики прийняття рішень, що 

формує основу для систематичного огляду 

подальших досліджень. Попри значний прогрес у 
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розвитку ML/DL та GeoAI для екологічного 

моніторингу, досі бракує уніфікованих підходів до 

оцінки точності за різними метриками, а також 

стандартів інтеграції мультиджерельних даних, що 

обмежує відтворюваність результатів і ускладнює 

їх практичне застосування. 

Методи огляду. Огляд виконано як скопінг‒

огляд з елементами систематичного підходу. 

Звітність узгоджено з рекомендаціями PRISMA‒

ScR [55] та керівництвом ROSES [20].  

Джерела інформації. Основний пошук 

здійснювали у базі Scopus і таргетовано в 

журналах видавництва MDPI. Відбір у Scopus 

проведено 22 березня 2025 року з охопленням 

предметних категорій Environmental Science 

(Ecological Modeling, Environmental Engineering, 

General Environmental Science), Earth and Planetary 

Sciences (Computers in Earth Sciences), Computer 

Science (Artificial Intelligence), Agricultural and 

Biological Sciences (Ecology, Evolution, Behavior 

and Systematics). Окремо сформовано довідковий 

набір «foundation/standards» без часових 

обмежень: Sentinel-2 User Handbook Євро-

пейського космічного агентства (ESA) [15], OGC 

GeoTIFF v1.1 Open Geospatial Consortium (OGC) 

[40], CARD4L Комітету з супутникових 

спостережень за Землею (CEOS) [9], IG3IS 

Всесвітньої метеорологічної організації (WMO) 

[61], а також джерела щодо місій Sentinel і GOES 

[12, 48, 54], платформи Google Earth Engine [19] і 

форматів HDF5 та netCDF [16, 45]. Ці матеріали 

використовували для опису сенсорних 

характеристик, форматів і інфраструктури та не 

включали до кількісного синтезу. Додатковий 

пошук у MDPI виконано 22 березня 2025 року за 

ключовими словами «artificial intelligence» AND 

ecology з часовим обмеженням 2023–2025 років і 

фільтрами Review Articles, Open Access, 

Environmental and Earth Sciences. Цей 

таргетований пошук слугував для картування 

оглядових трендів і доповнював корпус 

емпіричних робіт з інших джерел. В усіх запитах 

пошук проводили за полями Title, Abstract, 

Keywords. Також здійснено пошук у Web of 

Science Core Collection, IEEE Xplore, ACM Digital 

Library та Inspec. «Сіру» літературу розглядали як 

довідкову відповідно до Cochrane Handbook [8] і 

не включали до кількісного синтезу. 

Стратегія пошуку. Використовувалися 

комбінації термінів “artificial intelligence”, “machine 

learning” та “deep learning” у поєднанні з 

“environmental monitoring”, “ecology” та “Earth 

observation”. Запити адаптувалися під синтаксис 

кожної бази, проте логіка залишалася спільною. 

Семантичні варіації (наприклад, «remote sensing», 

«GeoAI», «water quality», «LULC») застосовувалися 

для розширення покриття. 

Критерії відбору. До аналізу включалися 

лише публікації у рецензованих журналах, що 

мають DOI та індексацію у провідних наукових 

базах (Scopus або Web of Science). Основний 

період охоплення становив 2021‒2025 роки, із 

додатковим врахуванням ключових праць 2016–

2020 років, які сформували методологічне 

підґрунтя. Тематика статей мала безпосередньо 

стосуватися застосування ШІ (ML, DL, GeoAI) у 

сфері екологічного моніторингу. Виняток 

становили фундаментальні/стандартотворчі 

джерела (стандарти, специфікації місій, формати 

даних), які могли бути опубліковані раніше 2016 

року; вони використовувалися як технічна база 

контексту. З аналізу виключалися конференційні 

тези, технічна документація, дисертації, 

препринти та статті без DOI, а також роботи, що 

не мають екологічної спрямованості (наприклад, 

застосування AI у медичній візуалізації).  

Відбір досліджень. Усі записи було 

дедупліковано, після проведено скринінг на рівні 

назви, анотації та повного тексту. 

Репрезентативність забезпечувалася поєднанням 

тематичних і міждисциплінарних джерел. 

Вилучення даних та оцінювання якості. Для 

кожного дослідження взяли інформацію про 

регіон або біом, джерела даних (сенсори, 

просторово-часова розрізненість, ARD-статус), 

етапи передобробки, постановку задачі, 

застосовані моделі ML/DL/GeoAI, схеми валідації 

(просторова, часова, blocked CV, незалежний 

тест), а також ключові метрики (Overall Accuracy, 

F1, Cohen’s κ, коефіцієнт детермінації R2, середня 

абсолютна похибка (MAE) / середньоквадратична 

похибка (RMSE) з інтервалами варіабельності, де 

вони були доступні). Додатково відзначалося 

застосування XAI та наявність відкритого коду чи 

даних. За можливості враховувалися просторово-

часові схеми крос-валідації для уникнення 

«витоків» даних. 

Методи синтезу. Синтез результатів 

проведено наративно з поділом за підгалузями 

(землекористування та земний покрив (LULC), 

вода / розчинений кисень (DO) / шкідливі 

«квітнення» водоростей (HABs), ліси / біомаса, 

атмосфера, урбан‒аналітика). Пряме порівняння 

несумірних метрик між різними задачами не 

виконувалося; порівняння здійснювалися лише в 

межах співмірних постановок і метрик. 

Обговорення результатів досліджень. 

Результати сучасних досліджень підтверджують, 

що точність моделей машинного навчання у 

завданнях екологічного моніторингу визначається 

не лише вибором алгоритму та якістю і 

просторовою роздільною здатністю вхідних 

супутникових даних. Вона суттєво залежить від 

коректного плану валідації, зокрема від просторово 
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стратифікованої крос-валідації, часової крос-

валідації та перевірки за блоками. Додатковий 

вплив мають баланс класів і склад ознак. У низці 

робіт наголошується на перевагах об’єктно-

орієнтованих методів у роботі з високороздільними 

знімками, тоді як піксельні підходи за інших рівних 

умов показують нижчі показники точності. 

У дослідженні [17] було проведено порівняння 

об’єктно-орієнтованого аналізу (OBIA) та штучних 

нейронних мереж (ANN) на прикладі екологічного 

коридору River Tea SCI в Іспанії. Використання 

даних Planet Labs дало точність близько 80 %, тоді 

як за допомогою супутникових даних Sentinel‒2 цей 

показник становив приблизно 70 %. Застосування 

ANN у межах тієї ж роботи дало нижчу точність ‒ 

близько 55 %. У іншому дослідженні [24] після 

мультимодальної інтеграції даних Sentinel‒2, 

Sentinel‒1 (SAR) та цифрової моделі рельєфу SRTM 

загальна точність (Overall Accuracy, OA) зросла до 

близько 89 %, що вказує на вирішальний внесок 

доповнювальних сенсорів. Водночас автори [17] 

підкреслюють чутливість результатів до масштабу 

сегментації та вибору навчально-тестового 

поділу, тож пряме перенесення чисел на інші 

регіони обмежене. 

У роботі [42] досліджено рекультивацію 

територій після видобутку вугілля (coal-mine 

overburdens) в Індії. На основі Sentinel‒2 здійснено 

класифікацію земного покриву та вікових груп 

лісових плантацій. Алгоритм SVM підтвердився 

найточнішим ‒ перевершив Random Forest і 

Maximum Likelihood Classifier у багатокласовій 

класифікації. Було показано, що з віком плантацій 

біомаса зростає в межах 10,5–23,7 Mg ha-1, а запаси 

вуглецю ‒ в межах 4,7–10,9 Mg ha-1, що має 

практичне значення для оцінки рекультивації. Ці 

висновки отримані за конкретного набору 

предикторів і схеми валідації; для узагальнення 

результатів потрібне зовнішнє тестування. 

У сфері агроекології важливим прикладом є 

робота [52], де було запропоновано гібридний 

підхід CNN–Random Forest із використанням 

фенологічних індексів. На основі даних Sentinel‒

2 та Landsat‒8 було досягнуто точності 95 % (OA) 

і коефіцієнта Каппи 0,893 при картографуванні 

послідовності вирощування рису. Це підтвердило 

доцільність інтеграції фенологічних ознак у 

системи моніторингу агроекосистем. Забезпечено 

добру узгодженість у часі між сенсорами, що 

зменшує похибки сезонності. 

Автори [67] досліджували задачу точного 

виявлення кокосових пальм на ізольованих атолах 

Тихого океану. Запропонована ними модель 

COCODET досягла середнього значення F1 86,5 %, 

що на 4–12 % перевищує результати інших 

сучасних алгоритмів. Це демонструє значення 

спеціалізованих архітектур глибинного навчання у 

завданнях моніторингу дрібних і щільно 

розташованих об’єктів. Перевага отримана на 

високороздільних даних; при нижчій роздільній 

здатності очікується спад продуктивності. 

Проміжний висновок. Загалом, у високій 

просторовій роздільності об’єктно‒орієнтовані 

методи забезпечують вищу точність порівняно з 

піксельними. В агроекології та у сфері 

рекультивації ключовим чинником стає інтеграція 

фенологічних показників і мультисенсорних 

даних, тоді як у задачах точкової детекції 

рослинності найкраще працюють спеціалізовані 

глибинні архітектури. У більш широких 

просторово‒часових задачах EO, за наявності 

великих різнорідних масивів і регуляризації, 

DL‒моделі та трансформери часто перевершують 

класичні ML‒підходи; однак коректні 

порівняння можливі лише в межах одного 

датасета та однакових схем валідації. Узагальнені 

характеристики моделей і ключових метрик у 

включених дослідженнях подано в таблиці 1. 

Таблиця 1 

Порівняльна точність різних моделей машинного навчання у класифікації супутникових зображень за 

даними екологічних досліджень 

Модель Вхідні дані Точність / F1 / κ Примітки 

OBIA 
Planet Labs 

(RapidEye/PlanetScope) 
≈ 80,0 % (OA) 

Кейс River Tea SCI; ANN ≈ 55  % на 

тих самих даних  

OBIA Sentinel-2 ≈ 70,0 % (OA) 
Кейс River Tea SCI; точність нижча, 

ніж у OBIA + Planet  

OBIA + 

інтеграція 

Sentinel-2 + Sentinel-1 

(SAR) + SRTM 
89,1 % (OA) 

Інтеграція оптики, SAR і DEM 

підвищує точність  

CNN–RF 

(гібрид, 

фенологія) 

Sentinel-2 + Landsat-8 
95,0 % (OA); 

κ  =  0,893 

Картографування рису; фенологічні 

індекси  

DL 

(COCODET) 

знімки високої 

просторової 

роздільної здатності 

86,5 % (F1) 
Кокосові пальми; на 4–12 % краще 

за інші методи  

SVM Sentinel-2 96,4 % (OA) Рекультивація; SVM > RF та MLC  

Примітка. OA ‒ загальна точність; κ ‒ коефіцієнт Каппи; F1 ‒ гармонійне середнє точності і повноти 
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За результатами включених робіт об’єктно 

орієнтований аналіз на дуже високій просторовій 

роздільній здатності дає близько 80 % загальної 

точності на PlanetScope/RapidEye, тоді як для 

Sentinel-2 близько 70 %; у тому ж кейсі штучна 

нейронна мережа показала близько 55 % загальної 

точності [17]. Інтеграція Sentinel-2 із Sentinel-1 

(SAR) та SRTM підвищує загальну точність до ≈ 

89 % (OA) [24]. У спеціалізованих задачах 

рекультивації підтверджено високу точність 

методу SVM близько 96,4 % (OA) [42], тоді як 

гібрид CNN–Random Forest на фенологічних 

ознаках досягає близько 95 % загальної точності 

(близько 0,893) [52]. Для детекції об’єктів на 

високій роздільній здатності архітектура 

COCODET забезпечує F1 близько 0,865 і 

перевищує альтернативні методи на 4–12 % [67]. 

Для оцінювання якості води повідомляється 

коефіцієнт детермінації 0,93–0,96 [30, 51]. В 

атмосферному домені узгодженість оцінок 

приземних концентрацій діоксиду нітрогену 

досягає коефіцієнта детермінації близько 

0,93 [2], а глобальні щоденні карти 

дрібнодисперсного пилу з аеродинамічним 

діаметром частинок до 2,5 мікрометра на решітці 

1 км демонструють коефіцієнт детермінації 

близько 0,91 [60]. Узагальнені комбінації «домен 

сенсори моделі» та відповідні діапазони 

ключових метрик для включених досліджень 

подано в таблиці 2. 
 

Таблиця 2 

Узагальнення застосувань штучного інтелекту в екологічному моніторингу за доменами, сенсорами, 

моделями та діапазонами точності 

Домен 

моніторингу 

Типові 

сенсори / дані 

Моделі ШІ 

(приклади) 

Діапазони ключових 

метрик 
Ключові виклики 

LULC, ліси, агро, 

рекультивація 

Оптика 

(Sentinel-2, 

PlanetScope, 

Landsat-8), 

SAR (Sentinel-

1), DEM 

(SRTM), 

спектральні та 

фенологічні 

індекси 

OBIA, RF, SVM, 

ANN, гібрид 

CNN–RF, спец. 

DL-архітектури 

OA ≈ 70–96 % (LULC); 

інтегр. 

оптика+SAR+DEM ≈ 

89 % OA; 

рекультивація (SVM) ≈ 

96,4 % OA; гібрид 

CNN–RF ≈ 95 % OA, κ 

≈ 0,89; детекція 

дрібних об’єктів 

(COCODET) F1 ≈ 0,87 

Залежність від 

просторової роздільної 

здатності й сегментації; 

вибір схеми CV; 

дисбаланс класів; 

обмежена 

переносимість між 

біомами 

Водні системи 

(якість води, DO, 

HABs) 

MODIS-Aqua, 

Sentinel-2, 

Landsat, 

PlanetScope; 

продукти Chl-

a, CDOM, 

мутність, SST, 

солоність; in 

situ 

Ансамблеві ML 

(RF, бустинг, 

Extra Trees, 

XGBoost, SVR, 

дерева), ANN, 

LSTM 

Якість води: R2 ≈ 0,93–

0,96 за низьких 

RMSE/MAE; DO: 

прийнятні R2, RMSE, 

MAE для регіональних 

кейсів; HABs: OA ≈ 

88,7 %, AUC ≈ 0,90 

Просторова/сезонна 

гетерогенність; 

обмежені й 

нерівномірні in situ дані; 

хмарність і прогалини в 

оптичних рядах; 

дисбаланс класів і 

рідкісні події (HABs) 

Атмосферне 

повітря (NO2, 

PM2.5) 

TROPOMI, 

GEMS, 

MODIS AOD 

(MAIAC), 

метеополя, 

наземні 

станції, 

реаналізи 

(CAMS) 

Ансамблеві ML 

(XGBoost тощо), 

гібридні 

супутниково-

наземні схеми, 

вкладена CV 

NO2: підвищення CV 

R2 з ≈ 0,73 до ≈ 0,93; 

PM2.5: глобальна 

щоденна решітка 1 км, 

CV R2 ≈ 0,91, RMSE ≈ 

9,2 мкг·м3 

(демонстрац. день R2 ≈ 

0,92) 

Нерівномірне наземне 

покриття; 

регіональні/сезонні 

відмінності зв’язку 

AOD–концентрація; 

потреба регулярного 

перенавчання; прозора 

ф’юзія мультиджерел і 

оцінка невизначеності 
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Продовження таблиці 2 

Домен 

моніторингу 

Типові 

сенсори / дані 

Моделі ШІ 

(приклади) 

Діапазони ключових 

метрик 
Ключові виклики 

Прибережні та 

урбанізовані 

території 

Sentinel-2A, 

інші ВДЗ 

оптичні й 

SAR-дані; 

індекси (NDVI 

тощо); 

допоміжні 

GIS-шари, 

social sensing 

CNN 

(VGG16+TL), 

інші CNN, 

трансформери, 

GeoAI / urban 

digital twins 

Класифікація типів 

узбережжя: базова 

RGB OA ≈ 64 %; TL дає 

приріст ≈ 19–21 п.п.; 

оптимальна NIR–R–G 

≈ 89 % OA 

Хмарність і фенологія; 

інтеграція оптики, SAR і 

допоміжних джерел; 

потреба в XAI для 

просторового 

планування; можливі 

упередження 

social/mobility-даних 

Методичні засади оцінювання точності 

моделей змін земного покриву систематизовано в 

метааналізі [37], що підкреслює чутливість 

метрик до вибору даних, просторової роздільної 

здатності та схем валідації. Узагальнені 

результати таблиці показали, що рівень точності 

класифікації суттєво змінюється залежно від 

вибраної моделі ML та характеристик 

супутникових даних. Найвищі значення 

досягалися у випадку застосування SVM, тоді як 

штучні нейронні мережі демонстрували нижчі 

показники. Ця різниця простежується передусім у 

задачах з обмеженим обсягом даних і без глибокої 

ф’юзії; за умов достатнього обсягу та 

різноманіття даних перевага зміщується в бік 

сучасних DL‒архітектур. 

У всіх фазах розвитку підходів до якості води ‒ 

від емпіричних до біооптичних і AI‒орієнтованих 

моделей спостерігається сталий прогрес. 

Дослідники [10] систематично оцінюють потенціал 

супутникових платформ (Landsat, Sentinel‒2, 

MODIS, RapidEye, Hyperion) та спектр алгоритмів 

машинного навчання ‒ від традиційних, як SVM та 

дерева рішень, до сучасних CNN, RNN і 

генеративно-змагальних мереж (GAN). Автори 

підкреслюють, що лише мультисенсорна ф’юзія 

(оптика, гіперспектрал, SAR) та вдосконалені 

методи об’єднання даних відкривають шлях до 

достатньої точності, охоплення і оперативності у 

моніторингу якості води. 

Довготривалий аналіз якості води у 

внутрішніх і прибережних водоймах Індії 

провели [30]. Автори оцінили ансамблеві моделі 

ML із використанням даних MODIS‒Aqua, 

Sentinel‒2 MSI (Multispectral Instrument ‒ 

багатоспектральний інструмент), PlanetScope та 

польових вимірювань. Значення R2 для хлорофілу 

a, кольорової розчиненої органіки та мутності 

становили 0,93‒0,96, при цьому RMSE і MAE 

залишалися низькими. За період 2003‒2022 років 

виявлено як сезонні коливання, так і 

довгострокові зсуви: мутність знижувалася, а 

концентрація хлорофілу‒a поступово зростала. 

Ансамблеві моделі коректно відтворювали 

просторову неоднорідність якості води, що 

створює основу для управління ресурсами на 

принципах сталості. 

Урбанізація, дорожня інфраструктура та зміни 

LULC дедалі частіше аналізуються з використанням 

AI/RS-методів. Огляди 2024–2025 років фіксують 

перехід від класичних піксельних та об’єктно-

орієнтованих підходів до глибоких моделей (CNN, 

трансформери) з мультимодальною ф’юзією 

(оптика, SAR, знімки вулиць, дані про точки 

інтересу, мобільні/соціальні дані) і зростання ролі 

векторизованих виходів для дорожніх мереж і 

міських функцій [38, 39, 56, 59]. Ключові тренди 

включають доменно‒стійке навчання, слабко 

наглядові схеми, інтеграцію допоміжних джерел 

(соціальні сигнали, GIS), а також вимоги до 

пояснюваності й узагальнюваності моделей для 

практичного міського планування. 

Сучасні супутникові технології відкривають 

нові можливості для моніторингу прибережних 

екосистем. Поєднання оптичних і SAR забезпечує 

регулярність та всепогодні умови спостережень. 

Високороздільні знімки, разом із багатоспект-

ральними та поляриметричними вимірюваннями, 

дозволяють виявляти зміни берегової лінії та 

простежувати динаміку ландшафтів під впливом 

природних і антропогенних чинників. 

Коли супутникові дані інтегруються у 

середовище ГІС і доповнюються алгоритмами ШІ, 

аналітика стає детальнішою та більш оперативною. 

Водночас необхідні міждисциплінарні підходи та 

сталі процедури калібрування й валідації (як in situ, 

так і міжсенсорні), щоб гарантувати надійність 

результатів і їх практичну застосовність. За даними 

експериментів із класифікації прибережних типів за 

даними Sentinel-2A на платформі GEE, перенесення 
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навчання для VGG16 підвищило точність у 

середньому на 19,3 % порівняно з вагами за 

замовчуванням; комбінація NIR–R–G дала 89,2 % 

(приріст 25,5 %), тоді як базова R–G–B мала 64,40 % 

із підвищенням 21,20 % після перенесення навчання 

[7]. Схему етапів класифікації наведено на рис. 1. 

  
Рисунок 1 ‒ Схема класифікації типів узбережжя за 

знімками Sentinel-2A (GEE) з використанням VGG16 і 

трансферного навчання (TL) 

 

Дослідження на озері Байяньдянь показує, як 

поєднати супутникові дані з ML для оцінювання 

розчиненого кисню (DO) [51]. Схему конвеєра 

обробки та оцінювання наведено на рис. 2. 

Використано 251 емпіричний набір і знімки 

Sentinel-2; протестовано дев’ять моделей для 

швидкого відтворення просторового поля DO у три 

сезони (весна, літо, осінь). Найкращою стала Extra 

Trees Regression (ETR); AdaBoost, баєсівська 

гребенева регресія (BRR) та SVR поступилися за 

точністю й стабільністю. Концентрації DO лежали в 

межах 0–12 мг/л із виразною сезонною та 

просторовою мінливістю: найвищі значення ‒

навесні (особливо на півдні водойми), найнижчі ‒

восени. Підхід знімає обмеження класичних 

польових вимірювань і дає оперативне, суцільне 

картування параметра в урбанізованій водній 

системі. Цей результат стосується конкретної 

водойми (Байяньдянь) і набору предикторів із 

Sentinel-2 (n = 251 емпіричних зразків) за заданим 

дизайном валідації; в інших регіонах/сезонах 

порівняльна перевага моделей може змінюватися, 

що узгоджується з висновками огляду про 

залежність метрик від мультисенсорних комбінацій 

і схем ф’юзії [10]. На рис. 2 подано схему пайплайна 

оцінювання розчиненого кисню за даними Sentinel-

2 та регресійними моделями ML. 

 
Рисунок 2 ‒ Пайплайн оцінювання розчиненого 

кисню (DO) за даними Sentinel-2 та регресійними 

моделями ML  

 

Окрім моніторингу DO у внутрішніх 

водоймах, значна увага приділяється 

прогнозуванню шкідливих «квітнень» водоростей 

(HABs) у прибережних морських акваторіях. У 

[49] побудовано модель прогнозу HABs на основі 

відкритих супутникових даних. Використано 

хлорофіл-a (Chl-a), температуру поверхні моря 

(Sea Surface Temperature, SST), солоність і вітер, а 

також похідні просторові й часові показники, 

зокрема стандартні відхилення Chl-a та SST і 

градієнтні індикатори. Навчання проводили з 

поділом даних на 66 % тренувального і 34 % 

тестового наборів. Модель розрізняла стани 

«квітіння/без квітіння» з точністю 88,7 %, AUC = 

0,901. Серед інформативних предикторів 

відзначено статистики варіабельності SST і 

солоності, що відбивають просторово-часові 

закономірності HABs [49]. Зв’язок між SST та 

інтенсивністю/частотою прибережних HABs 

кількісно показано й на регіональних прикладах 

(Східно-Китайське море) [68]. Огляд [66] 

узагальнює сучасні підходи до моніторингу, 

прогнозування та раннього попередження HABs у 

прибережних водах (у т. ч. супутникові 

спостереження, чисельне моделювання, ML) і 

підкреслює міждисциплінарний характер 

проблематики. Серед інструментів згадуються 

дистанційне зондування, використання дронів, 

молекулярні біомаркери, токсикологічні тести та 

чисельне моделювання. ML‒моделі, зокрема 

ANN, дерева рішень, SVM і LSTM, також активно 

застосовуються [26]. Для більш надійного 

раннього попередження потрібна інтеграція 
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супутникових спостережень з in‒situ сенсорами і 

алгоритмами машинного навчання, з 

урахуванням сезонної мінливості та локальних 

сценаріїв цвітіння. Водночас залишаються 

обмеження: різні типи HABs ускладнюють 

узагальнення моделей, а питання прозорості й 

пояснюваності результатів ML і далі є 

проблемними [21]. 

Перспектива розвитку включає підводний 

відеомоніторинг, підвищення просторової та 

часової роздільної здатності та використання 

кількісної полімеразної ланцюгової реакції 

(quantitative polymerase chain reaction, qPCR) для 

швидкої ідентифікації видів. Автори дійшли 

висновку, що потрібні гібридні системи, які 

поєднують фізичні, біологічні та обчислювальні 

компоненти для адаптивного управління HABs і 

захисту морських екосистем. 

Соціо‒екологічні системи мають складну 

просторову структуру. У систематичних оглядах 

[10, 26, 37, 56] показано, як інтеграція ML і 

супутникових платформ підвищує 

масштабованість та точність екологічних оцінок. 

Екологічний коридор річки Tea (NW Іспанія). 

У дослідженні [17] використано знімки Sentinel‒2 

для моніторингу змін LULC на територіях Natura 

2000. Порівнювали кілька підходів, зокрема ANN, 

об’єктно‒орієнтований аналіз зображень (object‒

based image analysis, OBIA) та RF, і зафіксували 

відмінності в точності залежно від складу 

датасету, просторової роздільної здатності та 

схеми валідації. 

Як видно з таб. 2, моделі ШІ добре 

підлаштовуються до задач прогнозування змін 

довкілля. ANN, RF і LSTM виявляють зв’язки між 

супутниковими індикаторами та екологічними 

змінними: засухами, деградацією рослинного 

покриву, змінами класів землекористування. 

Узагальнені метрики точності (Accuracy, AUC) 

для обраних підходів подано в табл. 3. 

Таблиця 3 

Приклади застосувань моделей ШІ в екологічному прогнозуванні та їхні метрики точності  
 

Дослідження (ав-

тор, рік) 
Цільове явище Модель / підхід 

OA 

(%) 

AUC 

(%) 

Shahmiri et al. 

(2025) 

Шкідливі цвітіння 

водоростей (HABs) 

Штучна 

нейронна мережа 

(ANN) 

88,7 90,1 

García-Ontiyuelo et 

al. (2024) 

Класифікація LULC 

(Natura 2000, 

Іспанія) 

OBIA + 

PlanetScope 
80,0  

García-Ontiyuelo et 

al. (2024) 

Класифікація LULC 

(Natura 2000, 

Іспанія) 

OBIA + Sentinel-2 70,0  

García-Ontiyuelo et 

al. (2024) 

Класифікація LULC 

(Natura 2000, 

Іспанія) 

ANN + 

PlanetScope 
55,0  

García-Ontiyuelo et 

al. (2024) 

Класифікація LULC 

(Natura 2000, 

Іспанія) 

ANN + Sentinel-2 54,0  

Для порівняння взяли дві платформи ‒Sentinel-

2 і PlanetScope та два підходи обробки: OBIA і ANN 

[17]. Найкращий результат показала пара 

OBIA+PlanetScope ‒80 %; на тих самих знімках 

нейромережі дали близько 55 %. Для Sentinel-2: 

OBIA ‒70 %, ANN ≈ 54 % [17]. Таким чином, 

підсумкова точність визначається одночасно і 

характеристиками сенсора, і вибором моделі [17]. 

Такі відмінності в точності безпосередньо 

впливають на якість просторового планування: 

помилки класифікації можуть спричиняти хибне 

визначення зон урбанізації чи природних ділянок, що 

ускладнює ухвалення управлінських рішень [17]. 

Симуляцію змін виконано до 2031 року, що 

розширює роботу до інструмента середньо-

строкового планування [17]. Окремо підкреслено  

 

 

роль відкритих і умовно відкритих супутникових 

даних: вони формують повноцінну геопросторову 

основу як для заміни інвазійної флори й 

оптимізації лісогосподарських заходів, так і для 

залучення землевласників до спільного 

екологічного управління [17]. 

Можна зробити висновок, що своєчасність і 

точність класифікації прямо визначають якість 

адаптивних рішень у межах екологічної політики. 

На точність найбільше впливають попередня 

обробка, вибір сенсорів, рівень просторової 

деталізації та структура вхідних ознак. 

Підсумкову схему екологічного прогно-

зування на основі супутникових даних і методів 

машинного навчання подано на рисунку 3. 
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Рисунок 3 – Узагальнена схема екологічного 

прогнозування на основі супутникових даних і 

методів машинного навчання 

 

Невизначеність і переносимість. Узагальнені 

показники точності суттєво залежать від схеми 

валідації: випадкове перехресне тестування, як 

правило, завищує метрики порівняно з 

просторово/часово блокованими підходами. Для 

практичної придатності рекомендовано звітувати 

обидва варіанти валідації там, де це можливо, а 

також наводити інтервали невизначеності 

(бутстреп/пермутаційні довірчі інтервали) і 

результати перевірки переносимості на 

незалежних регіонах/роках. 

ШІ у дослідженнях від змін земного покриву до 

якості води розглядається вже не лише як 

автоматизація заради точності. У природо-

охоронному моніторингу він працює як опора 

адаптивного управління, зшиває сенсорні й 

супутникові дані з прогностичними моделями, 

вичитує приховані закономірності та вчасно 

попереджає про загрози. Наведені приклади 

показують, що за конкретних налаштувань даних 

(сенсорні комбінації, просторово-часові схеми крос-

валідації (CV), масштаб задачі) SVM та OBIA або 

гібридні підходи CNN–RF виявляються 

конкурентними, тоді як для завдань із великими 

різнорідними потоками даних (оптичні, SAR та 

соціальні сенсори) архітектури глибинного 

навчання й трансформерів забезпечують кращу 

узагальнюваність [3, 26, 56, 59]. Поєднання 

супутникових продуктів, зокрема TROPOMI 

(Tropospheric Monitoring Instrument на місії Sentinel-

5P) або GEMS (Geostationary Environment 

Monitoring Spectrometer) для оцінювання 

стовпчикової концентрації NO2, а також MODIS 

(Moderate Resolution Imaging Spectroradiometer) з 

алгоритмом MAIAC (Multi–Angle Implementation of 

Atmospheric Correction) для отримання аерозольної 

оптичної товщі, метеополів і наземних 

спостережень із алгоритмами машинного навчання 

забезпечує відтворювані оцінки приземних 

концентрацій. Для NO2 використання XGBoost із 

вкладеною крос-валідацією (nested CV) та 

супутниково–наземними предикторами підвищило 

узгодженість у 10-кратній CV з R2 ≈ 0,73 до R2 ≈ 

0,93 [2]. Для дрібнодисперсних частинок PM2.5 

глобальна щоденна карта з просторовою 

роздільністю 1 км, побудована на основі ансамб-

левого ML та багатоджерельних предикторів, 

досягла CV R2 = 0,91 при RMSE = 9,2 мкг/м3 за 

2017–2022 роки, а для демонстраційного дня 

зафіксовано CV R2 = 0,92 [60]. Ці результати 

узгоджуються з рамкою «завдання сенсори моделі» 

і підкреслюють потребу у стандартизованій 

просторово-часовій крос-валідації для забезпечення 

переносимості оцінок у різних регіонах і сезонах. 

Щоб такі рішення масштабувати і зробити 

відтворюваними, потрібні стандартизовані схеми 

валідації та звітування метрик, прозора ф’юзія 

мультиджерельних даних із повними метаданими та 

процедури XAI для інтерпретації факторів ризику; 

перевага цього підходу полягає у зведенні 

різнорідних потоків у єдиний цикл «спостереження ‒ 

прогноз ‒ рішення», що підвищує не лише метрики, 

а й стійкість систем, вони швидше реагують, 

коригуються і передбачають зміни. Якщо не 

вирішити етичні, інфраструктурні та методологічні 

вузли (прозорість, упередження, якість і сумісність 

джерел, облік невизначеності, переносимість і 

тлумачність моделей), потенціал ШІ в екологічному 

управлінні реалізується лише частково. 

Майбутні виклики та перспективи. 

Головна перешкода для широкого застосування 

ШІ в екомоніторингу полягає у невизначеності. 

Вона виникає з трьох джерел: по-перше, якість і 

узгодженість вхідних даних; по-друге, 

стабільність моделей за межами регіону, де їх 

навчали; по-третє, інтерпретованість отриманих 

результатів [26]. Для операційного використання 

важливо розрізняти алеторичну (пов’язану з 

даними) та епістемічну (модельну) 

невизначеність і надавати їх калібровані оцінки 

разом із прогнозами.  

Яквідомо, супутникові моделі (Sentinel‒2, 

MODIS та GEDI ‒ Global Ecosystem Dynamics 

Investigation, лідарний прилад NASA на МКС) 

демонструють високі метрики лише за умов, 

подібних до навчальних. Варто змінити тип 

біому, сезонність чи конфігурацію зйомки, і 

точність падає: R2 зменшується, RMSE зростає. 

Це особливо помітно для задач класифікації 

https://journal.ldubgd.edu.ua/index.php/index


32  Вісник ЛДУБЖД, №32, 2025 

LULC, оцінювання висоти й структури 

рослинності та прогнозу деградаційних процесів. 

Фактично йдеться про зсув домену, тобто 

ситуації, коли тестові дані походять з розподілу, 

відмінного від навчального (out‒of‒distribution, 

OOD), та про переносимість моделей. Тому 

валідність слід перевіряти на просторово і часово 

відокремлених вибірках, використовуючи 

блокову крос-валідацію (blocked cross‒validation) 

та часове відкладене тестування (temporal hold‒

out), а не лише на випадкових розбиттях.  

Окремою проблемою є пояснюваність. 

Алгоритми на основі дерев рішень (RF, XGBoost) 

цінують за швидкість і робастність, однак 

механізм ухвалення рішень непрозорий. Без 

зрозумілого зв’язку між ознаками моделі та 

екологічними процесами складно коректно 

тлумачити прогнози й інтегрувати такі рішення в 

управлінську практику [21]. Доречними стають 

XAI‒процедури (наприклад, SHAP/ діаграми 

часткових залежностей (partial dependence plots, 

PDP)) і калібрування довіри/невизначеності, щоб 

користувачі бачили внесок предикторів та межі 

застосовності моделей. Супутникові дані 

розподілені нерівномірно, деякі території 

покрито щільно, тоді як інші лише спорадично. 

Через це моделі HABs схильні до зниження 

продуктивності у тропіках, гірських або слабо 

досліджених регіонів [31, 35]. Додатково 

впливають дисбаланс класів і «рідкісні події», що 

потребує спеціальних стратегій вибірки, ваг та 

метрик (F1, площа під кривою «точність‒

повнота» (Precision‒Recall Area Under Curve, PR‒

AUC) для незбалансованих задач). 

Другим вузлом проблем виступають 

автоматизовані рішення для зонування ризиків, 

раннього попередження про пожежі чи оцінки 

деградації. Якщо не враховано локальний 

контекст і права місцевих громад, такі алгоритми 

можуть пропонувати некоректні дії. Додається й 

правова невизначеність: у екологічному секторі 

бракує чітких норм щодо застосування ШІ, тож 

відповідальність за помилкові прогнози або 

системні упущення лишається відкритою. Також 

актуальними є питання прозорості походження 

даних (data provenance), енергетичної вартості 

обчислень і дотримання принципів відкритої 

науки (відтворювані пайплайни, доступний код). 

Щоб розв’язати ці проблеми, треба діяти 

комплексно. По-перше, потрібно скомбінувати 

класичні фізичні моделі з нейромережами для 

досягнення балансу між достовірністю й 

гнучкістю [29]. По-друге, моделі мають 

залишатися працездатними навіть тоді, коли дані 

неповні або зашумлені, що особливо важливо для 

регіонів з обмеженим моніторингом. По-третє, 

потрібно виробити спільні стандарти оцінювання. 

Це передбачає аналіз невизначеностей через 

показники на кшталт помилки «поза пакетом» 

(out-of-bag, OOB error), MAE чи бутстреп‒оцінок, 

а також впровадження відкритих протоколів, які 

дозволять коректно порівнювати результати 

різних досліджень [56]. Перспективними 

напрямами вважають фізичнообґрунтоване 

машинне навчання, методи доменної адаптації і 

трансферного навчання, а також напів і 

слабконаглядові стратегії чи активне навчання 

для зменшення витрат на розмітку даних. 

Важливим кроком є створення відкритих 

еталонних наборів даних з чітким поділом на 

тренувальні, валідаційні та тестові частини, а 

також використання «паспортів моделей» і 

«паспортів датасетів» для прозорої звітності. У 

підсумку поєднання нових алгоритмів, фізичних 

принципів і міждисциплінарної співпраці дає 

шанс побудувати надійні та відповідальні 

системи екологічного моніторингу. 

Висновки. У цій роботі, відповідно до 

сформульованих завдань, здійснено цілеспря-

мований пошук і відбір рецензованих публікацій 

щодо застосувань ML, DL та GeoAI в екологічному 

моніторингу в доменах LULC, водних систем, 

атмосфери, прибережних і урбанізованих територій, 

систематизовано типові поєднання «домен, 

сенсори, моделі, схеми валідації» та узагальнено 

діапазони ключових метрик точності, які 

відображено в таблицях і блок-схемах. 

Проаналізовано методичні чинники результатив-

ності, зокрема просторово-часову організацію 

даних, мультисенсорну інтеграцію, баланс класів, 

вибір метрик і варіанти крос-валідації, окреслено 

основні джерела невизначеності та обмеження 

переносимості моделей між регіонами і сезонами. 

На цій основі сформовано узагальнену рамку 

використання штучного інтелекту в екологічному 

моніторингу з виділенням пріоритетних напрямів 

подальших досліджень і стандартизації, зокрема 

розвитку ARD-підходів, еталонних наборів даних, 

гібридних і фізично обґрунтованих моделей, а також 

ширшого впровадження засобів пояснюваного ШІ. 

Аналітична база сформована на рецензованих 

публікаціях за 2021–2025 роки з урахуванням 

базових праць 2016–2020. Фундаментальні 

специфікації місій, стандарти даних і 

інфраструктури використано як довідкову основу 

поза кількісним синтезом. Узагальнення виконано 

наративно з поділом за типами завдань, результати 

зведено у таблицях і блок-схемах. 

Отримано узгоджені діапазони точності між 

підгалузями. Для класифікації земного покриву 

спостерігаються значення загальної точності 70–

96 %. Для виявлення об’єктів, зокрема 

рослинності та міських елементів, інтегральна 

міра F1 наближається до ≈ 0,87. Для показників 



Bulletin of Lviv State University of Life Safety, №32, 2025  33 

якості води фіксуються значення детермінації у 

межах 0,93–0,96 за низьких похибок. Додатково 

підтверджено, що для прогнозу HABs у морських 

акваторіях точність досягає 88,7 %, а AUC 0,90, 

що демонструє приклад практичної значущості 

моделей у сфері раннього попередження. В 

атмосферному домені продемонстровано 

відтворювані оцінки приземних концентрацій 

оксидів нітрогену та дрібнодисперсного пилу на 

кілометрових решітках завдяки поєднанню 

супутникових продуктів, метеополів і наземних 

спостережень. У прибережних зонах трансферне 

навчання забезпечувало зростання точності в 

середньому на 19,3 %, особливо для комбінацій із 

NIR‒каналом. Зазначені діапазони відображають 

результати включених досліджень і залежать від 

типів даних та процедур валідації. Окремо 

показано, що переносимість моделей між 

регіонами і сезонами є обмеженою, що вимагає 

просторової та часової крос-валідації та 

зовнішніх тестів. 

Вищі результати досягаються за умов 

мультимодальної інтеграції оптичних, радарних і 

наземних вимірювань із прозорими метаданими 

та фіксацією готовності даних до аналізу, а також 

завдяки коректного дизайну просторово-часової 

валідації з незалежним тестуванням і 

оцінюванням невизначеності. Для побудови 

температурних карт доцільно використовувати 

теплові сенсори, наприклад Landsat TIRS або 

Sentinel–3 SLSTR, тоді як Sentinel–2 придатний 

для спектральних індексів і просторових трендів. 

Застосування методів пояснюваного штучного 

інтелекту підтримує інтерпретацію факторів 

ризику та підвищує довіру до моделей для 

оперативної підтримки рішень. 

Ключовими викликами залишаються 

гетерогенність даних і метрик, сезонна мінливість 

та обмежена переносимість моделей між біомами 

і регіонами. Окремо варто відзначити чутливість 

результатів до масштабу сегментації, балансу 

класів і вибору навчально‒тестових схем, що 

неодноразово впливало на діапазони точності у 

розглянутих кейсах. 

Подальший прогрес потребує не лише 

стандартизованих схем валідації й звітування, а й 

прозорої інтеграції мультиджерельних даних із 

повними метаданими. Важливо систематично 

оцінювати невизначеність і переносимість 

моделей, а також розвивати гібридні рішення, що 

поєднують фізичні процеси та методи машинного 

навчання. Такий підхід допоможе будувати 

системи, які не просто дають кращі метрики, а 

реально підтримують управлінські рішення. 

Практичне значення цього огляду полягає в 

тому, що узагальнені діапазони точності та 

ідентифіковані чинники результативності можуть 

служити орієнтирами. Вони допомагають обирати 

сенсори, алгоритми й метрики, планувати схеми 

відбору польових даних і аргументувати потребу в 

мультисенсорній інтеграції. Отримані висновки 

можуть бути використані для налаштування систем 

раннього попередження, планування польових 

обстежень та пріоритизації природоохоронних дій 

за умови локального калібрування й достатньої 

якості даних. 
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