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DYNAMIC STABILITY IN LEGGED ROBOTICS: 

ADVANCES AND CHALLENGES 
 

Dynamic stability is a core requirement for legged robots operating under modeling error, terrain variability, and 

intermittent ground contact. This article reviews published approaches that contribute to stable locomotion and whole-

body behavior, drawing on commercial, open-source, and academic platforms. 

Purpose. To synthesize and align model-based and learning-based methods for stability with sim-to-real practices, 

state estimation, and hardware trends, and to highlight open challenges and actionable guidance for deployment. 

Methods. We summarize model-based methods, including the Linear Inverted Pendulum Model, centroidal 

dynamics, and hierarchical inverse dynamics with quadratic programming, together with preview-horizon model 

predictive control. We then survey learning-based controllers such as PPO, SAC, DDPG, TD3, imitation learning 

(including adversarial and example-guided variants), hierarchical policies, meta-learning, and recent transformer-based 

policies for bipedal locomotion. We further review domain and dynamics randomization, curriculum design, policy 

distillation, progressive networks, and Rapid Motor Adaptation for transfer, and outline EKF/IEKF fusion of leg 

kinematics and inertial data, multiple-model/contact-aware filters, invariant neural-augmented Kalman filtering, and the 

use of low-rate vision/LiDAR updates in Pronto for estimation; finally, we note hardware trends including compliant and 

series-elastic actuation, energy-storing linkages, and thruster assistance. 

Results. A reported MuJoCo study on a Unitree Go1 highlights a representative trade-off: preview-horizon MPC 

rejected larger pushes, while PPO achieved a lower cost of transport on flat ground. Transfer techniques 

(domain/dynamics randomization, curricula, distillation, progressive nets, RMA) improve robustness to terrain and 

payload changes and rapid gait transitions; estimation pipelines with leg–IMU EKF/IEKF, multiple-model/contact-aware 

filters, invariant neural-augmented Kalman filtering, and Pronto’s low-rate vision/LiDAR updates bound long-term drift. 

Safety-aware control elements – constrained policy optimization, backup controllers, and Lyapunov/CBF-based layers – 

further reduce fall rates and hazardous actions. 

Conclusion. The review identifies open challenges reported in the literature, including formal safety for learned 

policies, robustness under contact-mode uncertainty, and practical sim-to-real pipelines that maintain performance on 

hardware. We recommend integrating CBF/Lyapunov shields with learned controllers, standardizing energy-aware loco-

manipulation benchmarks, expanding contact-aware/invariant-state estimators, and prioritizing compliant, energy-storing 

actuation to achieve safe, efficient, and generalizable real-world behavior. 

Keywords: centroidal dynamics; hierarchical inverse dynamics; model predictive control; impedance control; 

reinforcement learning; imitation learning; sim-to-real transfer; domain and dynamics randomization; state estimation 

(EKF/IEKF). 
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ДИНАМІЧНА СТІЙКІСТЬ КРОКУЮЧИХ РОБОТІВ: 

ВИКЛИКИ ТА ПЕРСПЕКТИВИ 

 
Динамічна стійкість є базовою вимогою для крокуючих роботів, що працюють за умов похибок моделі, 

мінливого рельєфу та переривчастих контактів із поверхнею. У статті розглянуто опубліковані підходи, що 

сприяють стабільній ході та цілісній поведінці всього тіла, з урахуванням комерційних, відкритих і академічних 

платформ. 

КОМП’ЮТЕРНІ НАУКИ ТА 

ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ 
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Мета. Узагальнити та зіставити модельно орієнтовані й навчальні методи забезпечення стійкості, практики 

перенесення із симуляції в “реальність”, підходи до оцінювання стану та релевантні апаратні рішення, а також 

виокремити відкриті виклики та пропозиції для подальших досліджень. 

Методи. Узагальнено модельно орієнтовані методи, зокрема лінійну модель оберненого маятника, 

центроїдну динаміку, ієрархічну інверсну динаміку з квадратичним програмуванням та MPC з горизонтом 

передбачення. Підсумовано навчальні методи: PPO, SAC, DDPG, TD3, імітаційне навчання (включно із 

змагальним та прикладно керованим), ієрархічні політики, метанавчання та новітні політики на основі 

трансформерів для двоногого пересування. Розглянуто засоби перенесення (доменна й динамічна рандомізація, 

навчання за програмою, дистиляція політик, progressive nets, Rapid Motor Adaptation), оцінювання стану 

(EKF/IEKF-злиття кінематики ніг та інерціальних даних, мультимодельні/контакт-обізнані фільтри, інваріантний 

нейромережею доповнений фільтр Калмана, низькочастотні візуальні/LiDAR-оновлення у Pronto) та апаратні 

тренди (пружні й послідовно-еластичні приводи, енергонакопичувальні ланки, допоміжні рушії). 

Результати. Наведене дослідження в MuJoCo на Unitree Go1 ілюструє типовий компроміс: MPC з 

передбачувальним горизонтом ефективніше компенсував зовнішні поштовхи великої амплітуди завдяки явній 

оптимізації із врахуванням обмежень, тоді як PPO забезпечив нижчу енергоємність руху на рівній поверхні 

(менший cost of transport). У частині перенесення показано, що доменна й динамічна рандомізація, змішане 

навчання за програмою та RMA підвищують надійність до змін рельєфу, навантаження і швидких переходів між 

типами ходи; дистиляція політик та progressive nets зменшують «забування» і спрощують багатозадачні політики. 

Для оцінювання стану підтверджено ефективність EKF/IEKF-інтеграції leg–IMU, мульти-модельних/контакт-

обізнаних фільтрів та інваріантного нейро-доповненого Кальмана, а також користь низькочастотних 

візуальних/LiDAR-оновлень у Pronto для стримування довготривалої помилки. Коротко означено апаратні 

чинники стійкості: комплаєнтні та SEA-приводи, енергонакопичувальні ланки й допоміжні рушії, що 

розширюють робочу область стабільних режимів. Додатково узагальнено елементи безпеково-орієнтованого 

керування – оптимізацію політик з обмеженнями, резервні регулятори та шари на основі функцій Ляпунова/CBF 

– як механізми зниження частоти падінь і ризикованих дій. 

Висновки. Стаття виокремлює відкриті виклики, зазначені в літературі: формальне забезпечення безпеки 

для навчальних політик, працездатність під час збоїв або втрат контакту та методики перенесення з симуляції на 

реальних роботів, що зберігають продуктивність на апаратній платформі. Практично значущими кроками є 

інтеграція CBF/Ляпунова як захисних шарів до RL-політик, стандартизація бенчмарків із енергетичними 

метриками та сценаріями локоманіпуляції, ширше застосування контакт-обізнаних/інваріантних оцінювачів 

стану та пріоритет апаратних конфігурацій із комплаєнтними приводами й енергоакумуляцією, що разом 

сприятиме безпечній, енергоефективній та узагальнюваній поведінці крокуючих роботів у реальному світі. 

Ключові слова: центроїдна динаміка; ієрархічна інверсна динаміка; модельно-прогнозне керування (MPC); 

імпедансне керування; навчання з підкріпленням; імітаційне навчання; перенесення з симуляції; доменна й 

динамічна рандомізація; оцінювання стану (EKF/IEKF). 

 
Introduction. We are living in an era of 

remarkable technological transformation, where 

breakthroughs in robotics, artificial intelligence, and 

computing are converging to redefine our vision of the 

future. The rapid progress in legged robots is paralleled 

by advancements in large language models, edge 

computing, advanced sensors, energy-efficient 

actuators, and bio-inspired designs. These innovations 

collectively propel robots from clumsy prototypes to 

increasingly versatile, human-like machines. 

Developments in machine learning, reinforcement 

learning, and sim-to-real transfer have dramatically 

improved robots’ ability to adapt and perform in 

dynamic environments, while hardware advances 

make them lighter, more agile, and power-efficient. 

This convergence hints at the emergence of truly 

general-purpose robots – machines capable of 

understanding, interacting, and responding to the 

world with unprecedented sophistication. As we 

stand on the cusp of a future where human-robot 

collaboration is commonplace, it is a privilege to 

contribute to this fast-evolving field with the potential 

to reshape our lives. 

At the heart of this transformation lies the 

challenge of dynamic stability, a fundamental 

capability. Dynamic stability is essential not only for 

stable locomotion but also for enabling manipulation 

and coordinated movements in dynamic and 

unpredictable environments, including human 

interaction [1], [2]. Ensuring dynamic stability 

requires managing complex dynamics and adapting 

continuously to changing conditions, challenge that 

forms the cornerstone for developing versatile, 

capable robots. 

Purpose. This paper explores the state of the art 

in robotic dynamic stability by reviewing key 

developments from both industry and research 

perspectives. We begin by reviewing major 

commercial projects, then examine open-source and 

research initiatives. Following this industry review, 

we provide a literature survey that delves into model-

based control, reinforcement learning approaches, 

sim-to-real transfer methods, state estimation, and 

hardware design innovations. By synthesizing 

insights from practical implementations and 

theoretical research, we identify key challenges and 
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chart potential future directions for teaching robots to 

achieve dynamic stability effectively. 

Object of research is the process of achieving 

dynamic stability in legged robots under diverse 

environmental conditions.  

Subject of research is the methods, algorithms, 

and hardware solutions used to ensure dynamic 

stability, including model-based control, 

reinforcement learning, sim-to-real transfer, state 

estimation, and hardware innovations. 

The purpose of the research is to conduct a 

comprehensive analytical review of contemporary 

approaches to dynamic stability in legged robots, 

identify key challenges, and outline promising 

directions for future research. 

Methods. To achieve this purpose, the following 

main research objectives are identified: 

- analyse key scientific works on dynamic 

stability in legged robots, which enables a clear 

statement of assumptions, performance metrics, and 

reported disturbance-rejection behaviors; 

- review commercial and open-source/academic 

platforms and their stability approaches, which 

enable mapping controller and estimation choices to 

typical operating scenarios; 

- systematise model-based, reinforcement learning, 

and hybrid control strategies, which will state when each 

is used and what limits each approach has; 

- examine sim-to-real transfer techniques, sensor 

fusion methods, and hardware design innovations, 

and note what concretely improved robustness on real 

robots; 

- determine the scientific novelty and practical 

significance of the results and propose future research 

directions, which will specify clear next steps to 

pursue. 

Results and their Discussions. This section 

provides an overview of leading projects and 

initiatives in legged robotics, divided into 

commercial and open-source/research efforts. Many 

platforms have pushed the boundaries of locomotion, 

dynamic stability, and real-world deployment – from 

logistics to entertainment and exploration. 

Comparison results are presented in the Table. 

Commercial Platforms 

● 1X Technologies: Specializes in humanoid 

robotics with robots like EVE and NEO. [See 

Appendix 6.1.] 

● Agility Robotics: Specializes in bipedal 

robots designed for logistics with their flagship robot 

Digit. 

● ANYbotics: Provides autonomous solutions 

for industrial inspection with ANYmal. 

● Apptronik: Focuses on advanced humanoid 

robots like Apollo and exoskeletons for enhanced 

safety and performance. 

● Boston Dynamics: Known for dynamic 

stability in robots such as Atlas, Spot, and Stretch. 

● Clone: Known for an android such as 

Protoclone. 

● Deep Robotics: Specializes in high-

performance quadrupeds such as X30 and is 

prototyping a humanoid platform. 

● Engineered Arts: Develops lifelike 

humanoid robots for interaction and entertainment 

(e.g., Ameca, Mesmer). 

● Figure AI: Develops humanoid robots for 

industrial tasks, including Figure 01 and Figure 02. 

● Fourier Intelligence: Focuses on 

rehabilitation and humanoid robotics (e.g., Fourier 

GR-1, GR-2). 

● GITAI: Develops space exploration robots 

like GITAI-G1. 

● Honda Robotics: Pioneered advanced 

humanoid robotics with systems such as ASIMO. 

● Kawada Industries and AIST: Produce 

humanoid and industrial robots (e.g., HRP-2, HRP-4, 

Nextage) emphasizing mobility, collaboration, and 

safety. 

● Kepler Robotics: Develops the Forerunner 

K-series general-purpose humanoids for industrial 

automation and logistics. 

● PAL Robotics: Develops humanoid and 

mobile robots such as REEM-C, TALOS, TIAGo Pro, 

and ARI. 

● Sanctuary AI: Works on general-purpose 

humanoid robots and control systems (e.g., Phoenix, 

Carbon AI Control System). 

● SoftBank Robotics: Renowned for service 

and social robots like Pepper and NAO. 

● Tesla: Recently introduced the humanoid 

robot Optimus for general-purpose tasks. 

● UBTECH Robotics: A leader in humanoid 

robot development (e.g., Walker S Series, Walker X). 

● Unitree Robotics: Offers quadruped and 

humanoid robots with an emphasis on performance 

and AI integration. 

● Xiaomi Robotics Lab: Developed platforms 

like CyberDog and CyberDog 2 aimed at both 

consumer and research applications. 

● XPENG Robotics: Develops advanced 

bionic robots for industrial and consumer use (e.g., 

Robot Unicorn, PX5). 

● Further reading: A handy online robotics 

portal covers all of these platforms at a glance [3]. 

Open and Academic 

● Duke University: Developed the Duke 

Humanoid for energy-efficient bipedal walking 

research. 

● Indian Institute of Science (IISc), 

Bengaluru: Developed the cost-effective biped Stoch 

BiRo for uneven terrains. 

https://journal.ldubgd.edu.ua/index.php/index
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● K-Scale Labs: Focuses on open-source 

humanoid robotics, such as K-Bot 0.1. 

● KAIST: Developed humanoid robots like 

Hubo, Albert Hubo, DRC-Hubo+, and PIBOT to 

advance mobility, disaster response, and AI-driven 

piloting. 

● MIT: Built an advanced humanoid robot 

capable of acrobatic behaviors. 

● NASA: Pioneered humanoid robotics for 

space with Robonaut 2 and Valkyrie, aiding astronaut 

support and extraterrestrial missions. 

● AIST: Developed the HRP series of 

humanoid robots. 

● NAVER LABS: Focuses on robotics research 

and developed AMBIDEX. 

● Noetix Robotics: Created the NING 

Humanoid for advanced locomotion and athletic 

tasks. 

● PND Robotics: Specializes in modular 

humanoid robots such as Adam. 

● Rethink Robotics: Introduced collaborative 

robots such as Baxter. 

● RoMeLa (UCLA): Developed innovative 

robots like CHARLI, DARwIn-OP, and THOR-RD for 

bipedal locomotion, disaster response, and dynamic 

tasks. 

● DFKI Robotics Innovation Center: 

Developed the RH5 Humanoid Robot for high-

performance dynamic tasks. 

● Universität Bonn: Created the igus® 

Humanoid Open Platform and NimbRo-OP2(X) for 

research and competitions. 

● USC: Developed robots focused on 

autonomous locomotion and human-robot 

interaction. 

● University of Tehran: Created the Surena 

Humanoid Robot series for advanced research. 

● University of Wisconsin–Madison: The UW 

WELL Lab advances legged robotics through 

projects such as STRIDE. 

● Virginia Tech: Developed SAFFiR, a 

humanoid robot for firefighting on naval ships with 

thermal resilience and autonomous capabilities. 

● Waseda University: Pioneered humanoid 

robotics with robots like Wabot 1, Wabot 2, and 

Kobian. 

● Willow Garage: Developed the research 

platform PR2.

  

Table 1 

 

Robots comparison chart (sorted by year) 

Year Organization Name Category Type Status Height 

(m) 

Mass 

(kg) 

DoF Payload 

(kg) 

Runtim

e (min) 

1970 WasedaUniversity WL-3 Research Biped Retired 1 60 6 N/A N/A 

1973 WasedaUniversity WABOT-1 Research Humanoid Retired 1.9 130 50 2 N/A 

1984 WasedaUniversity WABOT-2 Research Humanoid Retired 1.65 90 50 1 N/A 

1986 Honda E0 Research Biped Retired 1 50 6 N/A N/A 

1989 Honda E2 Research Biped Retired 1.2 70 6 N/A N/A 

1993 Sony SDR-

3X(earlydev

) 

Research Humanoid Prototype 0.5 6 20 0.2 30 

1999 Sony AIBOERS-

110 

Consumer Quadruped(

petrobot) 

Discontin

ued 

0.27 1.4 18 0 120 

2000 HondaRobotics ASIMO Research Humanoid Discontin

ued 

1.2 52 34 5 40 

2001 BostonDynamics RHex Commercial Hexapod Discontin

ued 

0.15 13 6 2 360 

2003 KawadaIndustries HRP-2 Research Humanoid Retired 1.54 58 30 2 30 

2003 KokoroCo. /ATR Actroid Research Humanoid Active 1.65 40 42 0 N/A 

2004 Sony QRIO Research Humanoid Discontin

ued 

0.6 7.3 38 0 60 

2005 KAIST Hubo Research Humanoid Active 1.21 43 41 2 40 

2005 HansonRobotics K-Bot Research Humanoid Retired 0.55 3 15 0 N/A 
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Year Organization Name Category Type Status Height 

(m) 

Mass 

(kg) 

DoF Payload 

(kg) 

Runtim

e (min) 

2005 Fujitsu HOAP-3 Research Humanoid Discontin

ued 

0.6 8.8 28 0.5 20 

2005 HansonRobotics AlbertHUB

O 

Research Humanoid Prototype 1.37 57 66 2 N/A 

2010 KawadaIndustries HRP-4 Research Humanoid Retired 1.51 39 34 0.5 30 

2010 RoMeLa(UCLA) CHARLI Research Humanoid Active 1.45 12 20 0.5 30 

2010 WillowGarage PR2 OpenSource Humanoid Inactive 1.65 230 32 1.8 120 

2011 NASA Robonaut2(

R2) 

Research Humanoid(

upperbody) 

Active 1.0(appro

x) 

50 42 9 N/A 

2011 RoMeLa(UCLA) DARwIn-

OP 

Research Humanoid Active 0.57 2.9 20 0.2 30 

2011 MIT Cheetah(Ge

n1) 

Research Quadruped Prototype 0.6 15 12 5 15 

2013 BostonDynamics Atlas Research Humanoid Retired 1.88 150 28 11 N/A 

2013 BostonDynamics BigDog Commercial Quadruped Discontin

ued 

0.76 110 16 40 30 

2013 NASA Valkyrie(R5

) 

Research Humanoid Active 1.9 125 44 20 N/A 

2013 RoMeLa(UCLA) THOR Research Humanoid Prototype 1.5 45 28 5 N/A 

2014 BostonDynamics WildCat Commercial Quadruped Discontin

ued 

0.75 150 12 20 30 

2014 SoftBankRobotics Pepper Commercial Humanoid Active 1.2 28 20 1 600 

2014 VirginiaTech SAFFiR Research Humanoid Prototype 1.78 65 30 5 N/A 

2015 AgilityRobotics Digit Commercial Bipedal Active 1.75 65 16 16 90 

2015 BostonDynamics LS3 Commercial Quadruped Discontin

ued 

0.91 508 12 180 1440 

2015 UniversityofTehran SurenaIII Research Humanoid Active 1.9 98 31 7 N/A 

2016 ANYbotics ANYmal Commercial Quadruped Active 0.69 31 12 10 120 

2016 RethinkRobotics Baxter OpenSource Collaborativ

e 

Discontin

ued 

1.6 75 15 2.3 AC 

2016 BostonDynamics Handle Commercial Wheeled Discontin

ued 

2 105 10 45 60 

2016 NoetixRobotics NINGHuma

noid 

OpenSource Humanoid Active 1.75 60 30 5 90 

2016 XPENGRobotics PX5 Commercial Humanoid Active 1.5 40 20 3 60 

2016 XPENGRobotics RobotUnicor

n 

Commercial Quadruped Prototype 0.5 30 12 10 120 

2016 PuduRobotics PuduBot Commercial Service Active 1 40 3 13 480 

2016 HansonRobotics Sophia Commercial Humanoid Active 1.7 48 62 0 N/A 

2017 FourierIntelligence GR-1 Commercial Humanoid Active 1.65 55 40 5 120 

2017 PALRobotics ARI Commercial Humanoid Active 1.65 40 15 2 480 

2017 PALRobotics REEM-C Commercial Humanoid Active 1.65 80 44 10 120 

2017 BostonDynamics Spot Commercial Quadruped Active 0.84 31.7 12 14 90 
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Year Organization Name Category Type Status Height 

(m) 

Mass 

(kg) 

DoF Payload 

(kg) 

Runtim

e (min) 

2017 BostonDynamics SpotClassic Commercial Quadruped Discontin

ued 

0.84 72 12 23 45 

2017 PALRobotics TALOS Commercial Humanoid Active 1.75 95 32 6 90 

2017 PALRobotics TIAGoPro Commercial Manipulator Active 1.45 70 10 3 480 

2017 DeepRobotics Jueying Commercial Quadruped Active 0.5 20 12 5 120 

2017 UnitreeRobotics Laikago Commercial Quadruped Active 0.6 22 12 5 150 

2020 UniversitätBonn igusHumano

id 

OpenSource Humanoid Active 1 8 20 2 30 

2020 XiaomiRoboticsLab CyberDog Commercial Quadruped Active 0.4 14 12 3 160 

2020 XiaomiRoboticsLab CyberDog2 Commercial Quadruped Active 0.36 8.5 13 3 60 

2020 UniversityofWiscons

in–Madison 

STRIDE Research Quadruped Active 0.5 13 12 5 30 

2020 MIT MiniCheetah Research Quadruped Active 0.3 9 12 2 20 

2021 IndianInstituteofScie

nce 

StochBiRo OpenSource Bipedal Active 0.45 4 6 2 30 

2021 1XTechnologies EVE Commercial Humanoid Active 1.7 60 28 3 60 

2021 1XTechnologies NEO Commercial Humanoid Prototype 1.7 55 25 3 60 

2021 GITAI GITAI-G1 Commercial SpaceHuma

noid 

Active 1.2 45 25 2 N/A 

2021 UnitreeRobotics AlienGo Commercial Quadruped Active 0.5 23.5 12 5 120 

2021 UnitreeRobotics B1 Commercial Quadruped Prototype 0.7 50 12 40 240 

2021 UnitreeRobotics Go1 Commercial Quadruped Active 0.3 12 12 3 120 

2021 UnitreeRobotics H1 Commercial Humanoid Prototype 1.7 47 20 5 60 

2021 EngineAIRobotics EngineAI-X Commercial Humanoid Prototype 1.65 60 28 5 60 

2021 PNDRobotics Adam OpenSource Humanoid Active 1.7 55 25 5 60 

2021 GhostRobotics Vision60 Commercial Quadruped Active 0.6 32 12 10 180 

2021 BostonDynamics Stretch Commercial Manipulator Active 2 500 7 23 480 

2022 Tesla OptimusG1 Commercial Humanoid Prototype 1.73 57 28 20 60 

2022 GalbotRobotics GalbotExplo

rer 

Commercial Quadruped Prototype 0.6 25 12 8 90 

2022 MenteeRobotics MenteeOne Commercial Humanoid Prototype 1.6 50 25 5 60 

2022 XiaomiRoboticsLab CyberOne Commercial Humanoid Prototype 1.77 52 21 1.5 45 

2023 Tesla OptimusG2 Commercial Humanoid Prototype 1.73 47 28 20 60 

2023 FigureAI Figure01 Commercial Humanoid Prototype 1.68 60 40 20 300 

2023 Apptronik Apollo Commercial Humanoid Prototype 1.73 73 30 25 240 

2023 LimXDynamics LimXInfinit

y 

Commercial Humanoid Active 1.75 85 52 10 480 

2023 SUPCON SUPCONIri

s 

Commercial Humanoid Prototype 1.7 65 30 8 90 

2024 KeplerRobotics ForerunnerK

2 

Commercial Humanoid Active 1.78 85 52 15 480 
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Figure. Atlas (Boston Dynamics), Optimus (Tesla), Digit (Agility Robotics), Figure 02 (Figure AI), G1 (Gitai), NEO 

(1X Technologies), Iron (XPENG Robotics), Phoenix (Sanctuary AI), Apollo (Apptronik), ANYmal (ANYbotics), Go1 

(Unitree Robotics), Spot (Boston Dynamics) 
 

Analysis of recent research and publications. 

Hezog et al. implement hierarchical inverse dynamics 

on a torque-controlled humanoid and show reliable 

momentum/contact tracking during walking [4]. 

Escande et al. propose a fast hierarchical QP and 

enable online whole-body motion at control rates 

suitable for balance [5]. Dai, Valenzuela, and Tedrake 

combine centroidal dynamics with full kinematics to 

plan feasible whole-body motions for locomotion [6]. 

Kajita and Tani introduce the LIPM and demonstrate 

stable bipedal walking on uneven terrain with a 

simplified template [7]. Haddadin surveys safety 

principles for contact-rich interaction and defines 

constraints for manipulation controllers [1]. Calinon 

et al. use imitation learning to reproduce human-like 

arm motions that generalize to new task conditions 

[8]. Ott et al. present Cartesian impedance control for 

flexible-joint robots and show compliant, safe 

interaction via stiffness and damping regulation [9]. 

Levine et al. train end-to-end visuomotor policies 

from real data and achieve closed-loop arm 

control directly from pixels [10]. Kuindersma et 

al. integrate optimization-based planning, estimation, 

and control on Atlas and demonstrate coordinated 

multi-contact behaviors [11]. Yang et al. improve 

data efficiency for reinforcement learning in legged 

systems and reduce the samples needed for 

locomotion skills [12]. Fallon et al. couple online 

affordance-based perception with whole-body 

planning to select feasible actions in real 

time [13]. Atkeson and Stephens analyze 

random sampling for dynamic programming 

and provide tools for coordinating high-dimensional 

control [14]. 

https://journal.ldubgd.edu.ua/index.php/index
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The surveyed works cover model-based control 

(LIPM, centroidal dynamics, hierarchical inverse 

dynamics, MPC), learning-based controllers (PPO, 

SAC, DDPG, TD3, transformer policies), sim-to-real 

techniques (domain/dynamics randomization, 

curricula, RMA), state estimation (EKF/IEKF, 

multiple-model, invariant neural-augmented filters), 

hardware choices (compliant/series-elastic actuation, 

thruster assistance), and safety elements (constrained 

policy optimization, backup controllers). However, 

results are reported under heterogeneous 

assumptions, metrics, and contact conditions, and are 

spread across commercial, open-source, and 

academic platforms without a unified view. This 

study contributes a structured synthesis and a 

consolidated platform comparison, linking published 

methods to typical scenarios (flat ground, rough 

terrain, payload changes, and loco-manipulation) and 

summarizing open challenges highlighted in the 

sources. The need for such an aligned, evidence-

based overview motivates the present work. 

Classical and Hybrid Control. Traditional 

control strategies rely on model-based techniques that 

use the robot’s dynamics to keep it stable [15]. The 

Linear Inverted Pendulum Model (LIPM) is widely 

used to generate walking patterns in bipedal robots by 

simplifying their dynamics [7], [108]. Extensions that 

include centroidal dynamics and full kinematics 

support whole-body motion during locomotion and 

manipulation [6]. Hierarchical inverse-dynamics and 

quadratic programming formulations help improve 

stability while juggling multiple tasks [4], [5], [16]. 

A recent MuJoCo benchmark compared a 

Unitree Go1 controlled by preview-horizon MPC 

with the same robot using PPO-based RL under 

identical external pushes. Within that setup, MPC 

handled larger disturbances thanks to explicit 

optimisation, whereas RL achieved a lower cost of 

transport on flat ground. These results are indicative 

of that configuration (controller tuning, horizons, 

reward/cost weights, and simulator fidelity) and do 

not establish a general ranking; rather, they suggest 

that a hybrid MPC–RL pipeline could capture the 

benefits of both approaches [17]. 

Safe and compliant interaction with the 

environment is also important. Impedance control lets 

robots adjust joint stiffness and damping, helping them 

absorb impacts and stay stable under contact forces [9]. 

Collision-detection and safe-response methods further 

contribute to both safety and stability [1]. 

Learning-Based Methods. Reinforcement 

learning (RL) lets robots refine control policies 

through trial and error [18]. Its roots include early 

work on temporal-difference learning and natural 

policy gradients [19], [20], [21], [22]. Modern model-

free algorithms  –  DQN [23], [24], DRQN [25], PPO 

[26], DDPG [27], and SAC [28] – have trained 

quadrupeds to run, obey velocity commands, and 

stand up after falls [29]. A vision-based PPO policy 

later let the same robot traverse rocks and steps at 1 

m/s using only onboard sensors [30]. Large MuJoCo 

studies mapped sample-efficiency and stability trade-

offs across these algorithms [31], [32]. Data-efficient 

tools such as Hindsight Experience Replay [33], 

imitation learning (DeepMimic) [34], and 

hierarchical policies [12], [35] shorten training time. 

Recent controllers now match full-size bipeds. A 

transformer policy trained in simulation let Agility 

Digit walk outdoors and resist pushes without further 

tuning [36]. Imitation-Relaxation Reinforcement 

Learning (IRRL) reached 5 m/s on a Mini-Cheetah 

while keeping gaits stable [37]. For value methods, 

Double DQN [38], Dueling networks [39], Prioritized 

Replay [40], and Rainbow [41] cut bias and speed 

learning. A3C [42] and Evolution Strategies [43] 

scale training; TRPO [44], K-FAC TRPO [45], and 

PPO keep on-policy updates stable. TD3 mitigates 

critic over-estimation [46]; PCL unifies actor–critic 

and Q-learning under one consistency loss [47]. 

Conservative Q-Learning tackles over-estimation in 

offline settings [48]. MAVIPER adds interpretability 

with decision-tree policies [49]. Beyond control, 

AlphaZero proved RL’s reach in board games [50]. 

Imitation learning avoids hand-crafted rewards. 

GAIL frames imitation as a GAN game [51]. Even a 

simple speed reward can yield rich behaviours when 

combined with procedural terrains [52]. 

Whole-body loco-manipulation has also 

advanced. Digit lifted and placed boxes after 

simulation training [53]; a quadruped-arm system 

learned smooth coordination [54]; WoCoCo used 

phase-specific networks for humanoid motion [55]; 

PolyTask distilled several specialists into one multi-

task policy [56]. 

Meta-learning cuts adaptation time. MAML [57] 

and RL22 [58] fine-tune quickly. Classic tools such as 

LQR-trees [59], [60] and distributional RL [61], [62] 

refine control. Hybrid controllers pair parametric gait 

generators with residual networks [63] or planners 

with RL execution [64]. Conditioned policies switch 

gaits on the fly [65]. Curriculum plus meta-RL extend 

speed ranges: curricular HER quadrupeds ran 3.45 

m/s outside [66], and MetaLoco gave zero-shot 

walking across designs [67]. Rapid Motor Adaptation 

copes with sudden terrain changes [68]. 

Effective sim-to-real transfer is still vital. 

Progressive Nets reduce forgetting while bridging the 

reality gap [69], [70]. Policy distillation and Actor-

Mimic compress multiple gaits [71], [72]. Option-Critic 

and Meta-Learning Shared Hierarchies reuse low-level 

skills [73], [74]. Latent-space MPC [75] and 

curriculum-based HER [76] further boost efficiency. 

Overall, learning-based methods now rival 

classical controllers in many tasks and offer fast 
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adaptation. Progress in data efficiency, safety, and 

transfer should make them even more practical for 

real-legged robots. 

Sim-to-Real, Hardware, and Perception. 

Policies that work in simulation often fail on hardware 

because simulators miss many subtle effects. Domain 

and dynamics randomisation make controllers see a 

wider range of conditions, which improves robustness 

[77], [78]. With heavy randomisation alone, 

Tan  transferred a quadruped policy from MuJoCo to 

the real robot on the first try [79]. 

Rapid Motor Adaptation (RMA) addresses 

changing terrain by pairing a base policy with an 

online adaptation module [80]. Trained only in 

simulation, the same quadruped walks on grass, 

stairs, pebbles, and sand with no manual tuning. The 

idea relates to meta-RL adaptation modules [81]. 

Dao  [82] randomised payload mass so a biped kept 

its footing while pulling carts or carrying liquids, and 

Duan  [64] learned a transition model that respects 

footstep plans on Cassie. Model-based meta-policy 

optimisation speeds such adaptation by learning a 

simulator-agnostic critic [83]. 

Curricula and stochastic contact modelling also 

help. A box-manipulation curriculum let Digit lift and 

place boxes without extra system identification [53]. 

NVIDIA’s GR00T N1 takes a broader step: it 

combines a vision–language transformer with a 

diffusion action head and executes language-

conditioned tasks on a GR-1 humanoid after purely 

simulated training [84]. 

Hardware choices can boost stability, too. 

Caltech’s LEO mixes legs with small thrusters for extra 

balance [85]. Series-elastic and compliant actuators 

absorb shocks on rough ground [86], and elastic hips 

with passive knees and ankles store energy in 

simulation tests [87]. A broad survey of recent 

humanoid hardware appears in [88]. Open designs 

such as Solo [89] and the series–parallel RH5 layout 

[90] show how lightweight drives and compliant 

linkages improve bandwidth and payload capacity. 

Accurate state estimation is another pillar. 

Combining leg kinematics with inertial data in an 

EKF offers real-time estimates [91], [92], while 

multiple-model filters handle changing contact 

modes [93]. Hybrid filters such as the Invariant 

Neural-Augmented KF (InNKF) limit drift after slips 

[94], [95], and low-rate camera or LiDAR updates, as 

in Pronto, bound long-term error [96]. Large-scale 

real-world data can help as well: over 800,000 grasp 

attempts let a vision network learn closed-loop 

grasping without precise calibration [97]. 

Finally, safety remains vital. Constrained Policy 

Optimisation [98] and intrinsic-motivation 

exploration [99], [100] reduce risky actions, yet 

learned policies still lack formal guarantees [101]. 

One remedy adds a backup controller that takes over 

near constraints [102]. Others learn Lyapunov or 

control-barrier functions alongside the main policy 

[101]. These hybrids lower the fall rate in hardware 

tests while keeping task performance high. 

Together, advances in transfer, hardware, 

perception, and safety continue to narrow the gap 

between simulation and reliable real-world 

deployment. 

Synthesis. Recent studies – such as [36], [37], 

[63], [64], [66], [67], [68], [80], [82], [102] – show 

steady progress toward reliable, agile legged robots. 

Learning-based controllers now deliver fast, 

adaptable gaits on rough terrain, while sim-to-real 

techniques narrow the modelling gap. Hardware 

innovations (e.g. thrusters, soft or series-elastic 

actuators) extend the range of stable behaviours. 

Improved state-estimation pipelines fuse contact 

cues with neural corrections to handle slip. 

Safety layers – backup policies or control-barrier 

functions – cut fall rates. Hybrid designs 

combine model-based planning with data-driven 

residuals, and meta-learning speeds online 

adaptation. Together, these strands bring legged 

machines closer to animal-level stability, letting 

them cope with unpredictable disturbances 

and new tasks that once defeated purely model-

based methods. 

For broader context, Tong reviews recent 

humanoid hardware and control trends [103]; Ha 

surveys learning-based legged locomotion and open 

problems [104]; and Gu outline a 2025 roadmap for 

humanoid locomotion and manipulation that 

integrates planning, control, and learning [105]. 

Future Directions. Robotic dynamic stability is 

an evolving field with several areas that require 

further exploration: 

● Hybrid Control Architectures: Integrate 

reinforcement learning with model-based control 

[106] to combine adaptability with stability. 

● Adaptability and Online Tuning: 

Techniques such as the Multiplicity of Behavior 

(MoB) framework [107] highlight the need for real-

time tuning. 

● Extreme Dynamic Stability: Research such 

as line walking with point feet [108] opens new 

avenues for maintaining stability on minimal 

supports. 

● Multi-Legged Locomotion: Extending 

controllers to robots with many legs [109] can 

improve both speed and dynamic stability. 

● Sim-to-Real Transfer: Enhancing 

simulation fidelity and developing robust transfer 

methods remain essential for bridging the gap 

between simulation and reality. 

Collaboration across academia, industry, and 

policy is essential to address these challenges and 

drive the next phase of legged robotics. 

https://journal.ldubgd.edu.ua/index.php/index
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Conclusions. We met our goal: reviewed 

approaches to dynamic stability in legged robots, 

identified the main challenges, and outlined next steps. 

Based on the results of the research, the 

following main conclusions can be drawn: 

- systematized model-based, learning-based, and 

hybrid control to show how each supports gait, 

balance, and whole-body motion; 

- analyzed published results on walking, 

manipulation, and coordinated behaviors, relying 

only on the cited sources; 

- clarified sim-to-real tools — domain and 

dynamics randomization, curricula, distillation, 

progressive nets, and rapid motor adaptation — and 

what they improve for hardware transfer; 

- showed that estimation pipelines (leg-IMU 

EKF/IEKF, multiple-model/contact-aided, invariant 

neural-augmented filters) are central for cutting drift 

and handling contact changes; 

- highlighted hardware choices — compliant or 

series-elastic actuation and thruster assistance — that 

widen the range of recoverable disturbances; 

- presented a single comparison of commercial, 

open, and academic platforms by their reported 

stability practices and specifications; 

Taken together, the literature points to hybrid 

control plus strong estimation as key for stability 

under intermittent contacts, while sim-to-real fidelity 

and safety layers remain practical bottlenecks. Near-

term work should tighten model–RL integration, 

enable online adaptation, explore point-foot 

balancing, and extend methods to multi-leg systems. 

The practical value is a scenario-based view that 

helps pick controllers, transfer methods, estimators, 

and safety layers for real robots. 
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