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DYNAMIC STABILITY IN LEGGED ROBOTICS:
ADVANCES AND CHALLENGES

Dynamic stability is a core requirement for legged robots operating under modeling error, terrain variability, and
intermittent ground contact. This article reviews published approaches that contribute to stable locomotion and whole-
body behavior, drawing on commercial, open-source, and academic platforms.

Purpose. To synthesize and align model-based and learning-based methods for stability with sim-to-real practices,
state estimation, and hardware trends, and to highlight open challenges and actionable guidance for deployment.

Methods. We summarize model-based methods, including the Linear Inverted Pendulum Model, centroidal
dynamics, and hierarchical inverse dynamics with quadratic programming, together with preview-horizon model
predictive control. We then survey learning-based controllers such as PPO, SAC, DDPG, TD3, imitation learning
(including adversarial and example-guided variants), hierarchical policies, meta-learning, and recent transformer-based
policies for bipedal locomotion. We further review domain and dynamics randomization, curriculum design, policy
distillation, progressive networks, and Rapid Motor Adaptation for transfer, and outline EKF/IEKF fusion of leg
kinematics and inertial data, multiple-model/contact-aware filters, invariant neural-augmented Kalman filtering, and the
use of low-rate vision/LiDAR updates in Pronto for estimation; finally, we note hardware trends including compliant and
series-elastic actuation, energy-storing linkages, and thruster assistance.

Results. A reported MuJoCo study on a Unitree Gol highlights a representative trade-off: preview-horizon MPC
rejected larger pushes, while PPO achieved a lower cost of transport on flat ground. Transfer techniques
(domain/dynamics randomization, curricula, distillation, progressive nets, RMA) improve robustness to terrain and
payload changes and rapid gait transitions; estimation pipelines with leg—IMU EKF/IEKF, multiple-model/contact-aware
filters, invariant neural-augmented Kalman filtering, and Pronto’s low-rate vision/LiDAR updates bound long-term drift.
Safety-aware control elements — constrained policy optimization, backup controllers, and Lyapunov/CBF-based layers —
further reduce fall rates and hazardous actions.

Conclusion. The review identifies open challenges reported in the literature, including formal safety for learned
policies, robustness under contact-mode uncertainty, and practical sim-to-real pipelines that maintain performance on
hardware. We recommend integrating CBF/Lyapunov shields with learned controllers, standardizing energy-aware loco-
manipulation benchmarks, expanding contact-aware/invariant-state estimators, and prioritizing compliant, energy-storing
actuation to achieve safe, efficient, and generalizable real-world behavior.

Keywords: centroidal dynamics; hierarchical inverse dynamics; model predictive control; impedance control;
reinforcement learning; imitation learning; sim-to-real transfer; domain and dynamics randomization; state estimation
(EKF/IEKF).

/l. B. Komenoeuu, IO. O. bop3sos, H. €. bypak

Jlveiscokuti Oeparcasnutl ynisepcumem Oe3nexu dcummeoisivHocmi, m. JIvgie

JIAHAMIYHA CTIMKICTh KPOKYIOUNX POBOTIB:
BUKJIMKU TA IEPCIIEKTUBUA

JunaMiyHa CTIHKICTh € 6a30BOI0 BUMOTOIO JUIl KPOKYIOUHMX POOOTIB, IO MPALIOIOTh 33 YMOB MOXHOOK MOEN,
MIHJIMBOTO peibedy Ta MEPEepUBYACTHX KOHTAKTIB i3 IOBEpXHEI0. Y CTaTTi PO3MIISHYTO OMyOJIKOBaHI MifX0AaH, IO
CHPUSIOTH CTA0UTBHIN X0/ Ta IUTICHIHN MOBEAIHII BCHOTO TiNla, 3 YPaXyBaHHIM KOMEPIIITHUX, BITKPUTHX 1 aKaAEMIYHHX
mw1athopm.
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Merta. Y3arajapHUTH Ta 3iCTABUTH MOJICJILHO OPI€HTOBaHI i HABYaIbHI METOAM 3a0e3NeYeHHs CTIHKOCTI, IPaKTHKU
MIEPEHECEHHS 13 CUMYJISILIT B “peasibHICTh”, MIAXOAM JI0 OLIHIOBaHHS CTaHY Ta PEJIEBAaHTHI amaparHi pillleHHS, a TaKOX
BUOKPEMUTH BiIKPUTI BUKJIMKH Ta TIPOMO3ULIT IS ITOAIBIINX JOCHIPKEHb.

Metoan. VY3arajgbHEeHO MOJAENBHO OpIEHTOBaHI METOAM, 30KpeMa JiHIHHY Mopaenb OOEpHEHOro MasTHHKA,
LEHTPOINHY AMHAMIKy, i€papxiuHy iHBEpCHY IUHaMIKy 3 KBaJpaTHYHUM mporpamyBaHHsIM Ta MPC 3 ropusoHTOM
nepenbauenns. IlincymoBano HapuanbHi metomu: PPO, SAC, DDPG, TD3, imitamiiHe HaB4aHHS (BKIIOYHO i3
3MarajJpHAM Ta TPUKIATHO KEPOBAaHUM), l€papxXidyHi HOJITHKHA, METaHABYAaHHS Ta HOBITHI TOJITHKH Ha OCHOBI
TpaHchopMepiB I TBOHOTOTO TepecyBaHHA. Po3risHyTO 3acobu mepeHeceHHs (TOMeHHa i AMHAMIYHA paHIOMIi3allis,
HaBYaHHS 3a TNPOrPaMoOI0, MUCTWIAMISA TONITHK, progressive nets, Rapid Motor Adaptation), omiHIOBaHHS CTaHy
(EKF/IEKF-310TTs KiHEMATHKH HIT Ta iHEpPI[iaJbHUX JAHUX, MYJIBTUMOICIbHI/KOHTAKT-0013HaHi GiNbTpH, iHBapiaHTHHI
HelipoMepexkero nonoBHeHUH ¢inbTp Kammana, HuzpkodacToTHi BizyansHI/LiDAR-oHOBREeHHS y Pronto) Ta amaparsi
TpeHau (IPY>KHI i MOCITiJOBHO-EAaCTHYHI IPUBO/IM, CHEPrOHAKONNYYBaJIbHI JIAHKH, TOTIOMDXHI pyIii).

PesynbraTn. Haeenene nocmimkenns B MuJoCo na Unitree Gol imoctpye TumoBmii kommpomic: MPC 3
nepen0avyBaJbHUM TOPU30HTOM €(EKTHBHIIIE KOMIICHCYBaB 30BHIIIHI IMOIITOBXH BEIMKOI aMILIITYAM 3aBASKU SIBHIN
onTuMizalii i3 BpaxyBaHHAM OOMexeHb, ToAl sk PPO 3a0e3neunB HMKYYy €HEProeMHICTh PyXy Ha piBHIH MOBEpXHI
(Menmmmii cost of transport). YV 4acTHHI mepeHECEHHS MOKA3aHO, MO JOMCHHA W JWHAMIYHA PaHIOMI3allis, 3MillIaHe
HaBYaHHS 3a nporpamoro Ta RMA miiBuInyoTs HaliliHICTh 0 3MiH penbedy, HaBaHTaKEHHsI 1 IIBUJKUX IIEPEXO0JIiB MIXK
TUTIAMH XOJTH; AUCTHIIALS MOJITHK Ta progressive nets SMEHIIYIOTh «3a0yBaHHS 1 CIIPOITYIOTH OaraTo3agaydHi MO THKH.
Jnsa ouintoBaHHs ctany migTBepmkeHo edekrtuBHicTs EKF/IEKF-iaTerpanii leg—IMU, MynbTH-MOAETHHUX/KOHTAKT-
0o0i3HaHUX (ITPTPIB Ta IHBApiaHTHOTO HEWpo-monmoBHeHoro KambMaHa, a TakoX KOPUCTh HHU3BKOYACTOTHHX
BisyanpHuX/LiDAR-oHOBNICHP y Pronto mms cTpuMyBaHHS IOBTOTPHBAJOi MOMIIIKH. KOpOTKO O3HAa4YeHO amapaTHi
YHHHUKA CTIMKOCTi: KOMIUTaeHTHI Ta SEA-TIpUBOIM, €HEPTrOHAKONMHWYYBAJbHI JAaHKH W JOMOMDKHI pyImii, 10
PO3IIUPIOIOTE POO0YY 00JaCTh CTAOLIBHUX peKUMIB. JI0JaTKOBO y3arajabHEHO €IEMEHTH OE3MeKOBO-OPIEHTOBAHOTO
KEpyBaHHS — ONTHMI3aLlilo MOJITHK 3 0OMEKEHHSIMH, PE3epBHI PEryJIATOpHU Ta Mapu Ha ocHOBI GpyHKuii JIsmyHoBa/CBF
— sIK MEXaHI3MHU 3HIKEHHsI YaCTOTH TaJiHb 1 PU3UKOBaHUX MiH.

BucnoBku. CTaTTs BHOKPEMIIIOE BIKPUTI BUKJIMKHY, 3a3HAUYCHI B JIiTepaTypi: hopMasibHe 3a0e3neucHHs OC3MeKu
JUIsl HABYAJIBHUX TOJIITHK, MTPaLe31aTHICTh Mij yac 3001B a00 BTpAT KOHTAKTY Ta METOJUKH IEPEHECEHHsI 3 CUMYJISLIT Ha
peanpHUX poOOTIB, IO 30epiraloTh MPOAYKTHUBHICTH Ha amapaTHid miuardopmi. [IpakTH4HO 3HAYYHIMMHU KPOKaMH €
igrerpaniss CBF/JIsnyHoBa sk 3axucHuX mapiB Ao RL-momitwk, crammaptuzamis OCHUMApKiB 13 €HEPreTUIHUMHU
METpUKaMH Ta CHEHAPIAMH JOKOMAHIIyJAIil, MIHPIIE 3aCTOCYBAaHHS KOHTaKT-O00I3HAHWX/IHBapiaHTHHX OIliIHIOBAYiB
CTaHy Ta NPIOPHUTET amapaTHUX KOHQIrypamiii i3 KOMIUIA€EHTHHMH IIPHBOJAMH ¥ CHEProakyMyJLILI€lo, IO Pa3oM
crpusATHMe Oe3TeUHiH, eHeproeeKTUBHIHN Ta y3aralbHIOBaHIH MOBEIIHII KPOKYIOUHX POOOTIB Y pealbHOMY CBiTi.

Karo4oBi cioBa: meHTpoinHa qUHAMIKa; iepapXidHa iHBEpCHA JIHAMIKa; MOAEIHHO-TIporHO3HE KepyBaHHsA (MPC);
iMIeTaHCHE KepyBaHHs, HaBUaHHS 3 IMIJKPIIUICHHAM; iMiTaliiiHe HaBUaHHS, IIEPCHECCHHS 3 CUMYIIAII; JOMEHHa i
JMUHaMigHa paHaomisaitis; ouinoBanis ctany (EKF/IEKF).

Introduction. We are living in an era of
remarkable technological transformation, where
breakthroughs in robotics, artificial intelligence, and
computing are converging to redefine our vision of the
future. The rapid progress in legged robots is paralleled
by advancements in large language models, edge
computing, advanced sensors, energy-efficient
actuators, and bio-inspired designs. These innovations
collectively propel robots from clumsy prototypes to
increasingly ~ versatile,  human-like  machines.
Developments in machine learning, reinforcement
learning, and sim-to-real transfer have dramatically
improved robots’ ability to adapt and perform in
dynamic environments, while hardware advances
make them lighter, more agile, and power-efficient.

This convergence hints at the emergence of truly
general-purpose robots — machines capable of
understanding, interacting, and responding to the
world with unprecedented sophistication. As we
stand on the cusp of a future where human-robot
collaboration is commonplace, it is a privilege to
contribute to this fast-evolving field with the potential
to reshape our lives.

At the heart of this transformation lies the
challenge of dynamic stability, a fundamental
capability. Dynamic stability is essential not only for
stable locomotion but also for enabling manipulation
and coordinated movements in dynamic and
unpredictable environments, including human
interaction [1], [2]. Ensuring dynamic stability
requires managing complex dynamics and adapting
continuously to changing conditions, challenge that
forms the cornerstone for developing versatile,
capable robots.

Purpose. This paper explores the state of the art
in robotic dynamic stability by reviewing key
developments from both industry and research
perspectives. We begin by reviewing major
commercial projects, then examine open-source and
research initiatives. Following this industry review,
we provide a literature survey that delves into model-
based control, reinforcement learning approaches,
sim-to-real transfer methods, state estimation, and
hardware design innovations. By synthesizing
insights from practical implementations and
theoretical research, we identify key challenges and
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chart potential future directions for teaching robots to
achieve dynamic stability effectively.

Object of research is the process of achieving
dynamic stability in legged robots under diverse
environmental conditions.

Subject of research is the methods, algorithms,
and hardware solutions used to ensure dynamic
stability, including model-based control,
reinforcement learning, sim-to-real transfer, state
estimation, and hardware innovations.

The purpose of the research is to conduct a
comprehensive analytical review of contemporary
approaches to dynamic stability in legged robots,
identify key challenges, and outline promising
directions for future research.

Methods. To achieve this purpose, the following
main research objectives are identified:

-analyse key scientific works on dynamic
stability in legged robots, which enables a clear
statement of assumptions, performance metrics, and
reported disturbance-rejection behaviors;

-review commercial and open-source/academic
platforms and their stability approaches, which
enable mapping controller and estimation choices to
typical operating scenarios;

-systematise model-based, reinforcement learning,
and hybrid control strategies, which will state when each
is used and what limits each approach has;

-examine sim-to-real transfer techniques, sensor
fusion methods, and hardware design innovations,
and note what concretely improved robustness on real
robots;

-determine the scientific novelty and practical
significance of the results and propose future research
directions, which will specify clear next steps to
pursue.

Results and their Discussions. This section
provides an overview of leading projects and
initiatives in legged robotics, divided into
commercial and open-source/research efforts. Many
platforms have pushed the boundaries of locomotion,
dynamic stability, and real-world deployment — from
logistics to entertainment and exploration.
Comparison results are presented in the Table.

Commercial Platforms

e 1X Technologies: Specializes in humanoid
robotics with robots like EVE and NEO. [See
Appendix 6.1.]

e Agility Robotics: Specializes in bipedal
robots designed for logistics with their flagship robot
Digit.

e ANYhbotics: Provides autonomous solutions
for industrial inspection with ANYmal.

e Apptronik: Focuses on advanced humanoid
robots like Apollo and exoskeletons for enhanced
safety and performance.

e Boston Dynamics: Known for dynamic
stability in robots such as Atlas, Spot, and Stretch.

e Clone: Known for an android such as
Protoclone.

e Deep Robotics: Specializes in high-
performance quadrupeds such as X30 and is
prototyping a humanoid platform.

e Engineered Arts: Develops lifelike
humanoid robots for interaction and entertainment
(e.g., Ameca, Mesmer).

e Figure Al: Develops humanoid robots for
industrial tasks, including Figure 01 and Figure 02.

e Fourier Intelligence: Focuses on
rehabilitation and humanoid robotics (e.g., Fourier
GR-1, GR-2).

e GITAI: Develops space exploration robots
like GITAI-G1.

e Honda Robotics: Pioneered advanced
humanoid robotics with systems such as ASIMO.

e Kawada Industries and AIST: Produce
humanoid and industrial robots (e.g., HRP-2, HRP-4,
Nextage) emphasizing mobility, collaboration, and
safety.

e Kepler Robotics: Develops the Forerunner
K-series general-purpose humanoids for industrial
automation and logistics.

e PAL Robotics: Develops humanoid and
mobile robots such as REEM-C, TALOS, TIAGo Pro,
and ARI.

e Sanctuary Al: Works on general-purpose
humanoid robots and control systems (e.g., Phoenix,
Carbon Al Control System).

e SoftBank Robotics: Renowned for service
and social robots like Pepper and NAO.

e Tesla: Recently introduced the humanoid
robot Optimus for general-purpose tasks.

e UBTECH Robotics: A leader in humanoid
robot development (e.g., Walker S Series, Walker X).

e Unitree Robotics: Offers quadruped and
humanoid robots with an emphasis on performance
and Al integration.

e Xiaomi Robotics Lab: Developed platforms
like CyberDog and CyberDog 2 aimed at both
consumer and research applications.

e XPENG Robotics: Develops advanced
bionic robots for industrial and consumer use (e.g.,
Robot Unicorn, PX5).

e Further reading: A handy online robotics
portal covers all of these platforms at a glance [3].

Open and Academic

e Duke University: Developed the Duke
Humanoid for energy-efficient bipedal walking
research.

e Indian Institute of Science (11Sc),
Bengaluru: Developed the cost-effective biped Stoch
BiRo for uneven terrains.
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e K-Scale Labs: Focuses on open-source
humanoid robotics, such as K-Bot 0.1.

e KAIST: Developed humanoid robots like
Hubo, Albert Hubo, DRC-Hubo+, and PIBOT to
advance mobility, disaster response, and Al-driven
piloting.

e MIT: Built an advanced humanoid robot
capable of acrobatic behaviors.

e NASA: Pioneered humanoid robotics for
space with Robonaut 2 and Valkyrie, aiding astronaut
support and extraterrestrial missions.

e AIST: Developed the HRP
humanoid robots.

e NAVER LABS: Focuses on robotics research
and developed AMBIDEX.

e Noetix Robotics: Created the NING
Humanoid for advanced locomotion and athletic
tasks.

e PND Robotics: Specializes
humanoid robots such as Adam.

e Rethink Robotics: Introduced collaborative
robots such as Baxter.

e RoMelLa (UCLA): Developed innovative
robots like CHARLI, DARwIn-OP, and THOR-RD for

series of

in  modular

bipedal locomotion, disaster response, and dynamic
tasks.

e DFKI Robotics Innovation Center:
Developed the RH5 Humanoid Robot for high-
performance dynamic tasks.

e Universitit Bonn: Created the igus®
Humanoid Open Platform and NimbRo-OP2(X) for
research and competitions.

e USC: Developed robots focused on
autonomous locomotion and human-robot
interaction.

e University of Tehran: Created the Surena
Humanoid Robot series for advanced research.

e University of Wisconsin—-Madison: The UW
WELL Lab advances legged robotics through
projects such as STRIDE.

e Virginia Tech: Developed SAFFIR, a
humanoid robot for firefighting on naval ships with
thermal resilience and autonomous capabilities.

e Waseda University: Pioneered humanoid
robotics with robots like Wabot 1, Wabot 2, and
Kobian.

e Willow Garage: Developed the research
platform PR2.

Table 1

Robots comparison chart (sorted by year)

Year Organization Name Category Type Status Height = Mass DoF Payload Runtim
(m) (kg) (kg) e (min)
1970  WasedaUniversity WL-3 Research Biped Retired 1 60 6 N/A N/A
1973  WasedaUniversity = WABOT-1  Research Humanoid = Retired 1.9 130 50 2 N/A
1984  WasedaUniversity = WABOT-2  Research Humanoid = Retired 1.65 90 50 1 N/A
1986 Honda EO Research Biped Retired 1 50 6 N/A N/A
1989 Honda E2 Research Biped Retired 1.2 70 6 N/A N/A
1993 Sony SDR- Research Humanoid = Prototype 0.5 6 20 0.2 30
3X(earlydev
)
1999 Sony AIBOERS-  Consumer  Quadruped( Discontin 0.27 14 18 0 120
110 petrobot) ued
2000 HondaRobotics ASIMO Research Humanoid = Discontin 1.2 52 34 5 40
ued
2001  BostonDynamics RHex Commercial Hexapod  Discontin 0.15 13 6 2 360
ued
2003 = Kawadalndustries HRP-2 Research  Humanoid = Retired 1.54 58 30 2 30
2003 = KokoroCo. /ATR Actroid Research  Humanoid = Active 1.65 40 42 0 N/A
2004 Sony QRIO Research Humanoid = Discontin 0.6 7.3 38 0 60
ued
2005 KAIST Hubo Research Humanoid = Active 1.21 43 41 2 40
2005 = HansonRobotics K-Bot Research  Humanoid = Retired 0.55 3 15 0 N/A
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Year Organization Name Category Type Status Height Mass = DoF Payload Runtim
(m) (kg) (kg) e (min)
2005 Fujitsu HOAP-3 Research Humanoid = Discontin 0.6 8.8 28 0.5 20
ued
2005  HansonRobotics = AlbertHUB = Research Humanoid = Prototype 1.37 57 66 2 N/A
6]
2010  Kawadalndustries HRP-4 Research Humanoid = Retired 151 39 34 0.5 30
2010  RoMelLa(UCLA) CHARLI Research Humanoid = Active 1.45 12 20 0.5 30
2010 WillowGarage PR2 OpenSource  Humanoid = Inactive 1.65 230 32 1.8 120
2011 NASA Robonaut2(  Research  Humanoid(  Active | 1.0(appro 50 42 9 N/A
R2) upperbody) X)
2011  RoMelLa(UCLA) DARwIn- Research Humanoid = Active 0.57 2.9 20 0.2 30
OP
2011 MIT Cheetah(Ge = Research | Quadruped Prototype 0.6 15 12 5 15
nl)
2013  BostonDynamics Atlas Research Humanoid = Retired 1.88 150 28 11 N/A
2013 = BostonDynamics BigDog | Commercial Quadruped Discontin 0.76 110 16 40 30
ued
2013 NASA Valkyrie(R5  Research ~ Humanoid = Active 1.9 125 44 20 N/A
2013 = RoMeLa(UCLA) THOR Research  Humanoid = Prototype 15 45 28 5 N/A
2014 = BostonDynamics WildCat = Commercial Quadruped = Discontin 0.75 150 12 20 30
ued
2014 = SoftBankRobotics Pepper Commercial Humanoid = Active 1.2 28 20 1 600
2014 VirginiaTech SAFFIR Research  Humanoid = Prototype 1.78 65 30 5 N/A
2015 = AgilityRobotics Digit Commercial =~ Bipedal Active 1.75 65 16 16 90
2015  BostonDynamics LS3 Commercial Quadruped = Discontin 0.91 508 12 180 1440
ued
2015 = UniversityofTehran = Surenalll Research Humanoid = Active 1.9 98 31 7 N/A
2016 ANYhbotics ANYmal = Commercial Quadruped  Active 0.69 31 12 10 120
2016  RethinkRobotics Baxter OpenSource Collaborativ' Discontin 1.6 75 15 2.3 AC
e ued
2016  BostonDynamics Handle Commercial ~Wheeled | Discontin 2 105 10 45 60
ued
2016 NoetixRobotics ~ NINGHuma OpenSource Humanoid = Active 1.75 60 30 5 90
noid
2016 =~ XPENGRobotics PX5 Commercial Humanoid = Active 15 40 20 3 60
2016 = XPENGRobotics RobotUnicor Commercial Quadruped @ Prototype 0.5 30 12 10 120
n
2016 PuduRabotics PuduBot | Commercial  Service Active 1 40 3 13 480
2016 = HansonRobotics Sophia Commercial Humanoid = Active 1.7 48 62 0 N/A
2017 = Fourierintelligence GR-1 Commercial Humanoid  Active 1.65 55 40 5 120
2017 PALRobotics ARI Commercial Humanoid = Active 1.65 40 15 2 480
2017 PALRobotics REEM-C = Commercial Humanoid  Active 1.65 80 44 10 120
2017 = BostonDynamics Spot Commercial Quadruped = Active 0.84 31.7 12 14 90
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Year Organization Name Category Type Status Height Mass = DoF Payload Runtim

(m) (kg) (kg) e (min)
2017 = BostonDynamics = SpotClassic = Commercial = Quadruped Disljzggtin 0.84 72 12 23 45
2017 PALRobotics TALOS  Commercial Humanoid  Active 1.75 95 32 6 90
2017 PALRobotics TIAGoPro = Commercial Manipulator  Active 1.45 70 10 3 480
2017 DeepRobotics Jueying  Commercial Quadruped  Active 0.5 20 12 5 120
2017 = UnitreeRobotics Laikago ~ Commercial Quadruped = Active 0.6 22 12 5 150
2020  UniversititBonn igusl—!lémano OpenSource  Humanoid = Active 1 8 20 2 30
i
2020 XiaomiRoboticsLab = CyberDog = Commercial Quadruped  Active 0.4 14 12 3 160
2020 XiaomiRoboticsLab = CyberDog2 = Commercial Quadruped = Active 0.36 8.5 13 3 60
2020 | UniversityofWiscons STRIDE Research  Quadruped = Active 0.5 13 12 5 30
in—Madison
2020 MIT MiniCheetah Research  Quadruped  Active 0.3 9 12 2 20
2021 IndianinstituteofScie StochBiRo = OpenSource = Bipedal Active 0.45 4 6 2 30
nce
2021 = 1XTechnologies EVE Commercial Humanoid = Active 1.7 60 28 3 60
2021 = 1XTechnologies NEO Commercial Humanoid = Prototype 1.7 55 25 3 60
2021 GITAI GITAI-G1 = Commercial SpaceHuma Active 1.2 45 25 2 N/A
noid
2021  UnitreeRobotics AlienGo  Commercial Quadruped = Active 0.5 235 12 5 120
2021  UnitreeRobotics B1 Commercial Quadruped = Prototype 0.7 50 12 40 240
2021 | UnitreeRobotics Gol Commercial Quadruped = Active 0.3 12 12 3 120
2021 = UnitreeRobotics H1 Commercial Humanoid = Prototype 1.7 47 20 5 60
2021 = EngineAlRobotics  EngineAl-X Commercial Humanoid @ Prototype 1.65 60 28 5 60
2021 PNDRobotics Adam OpenSource  Humanoid = Active 1.7 55 25 5 60
2021 GhostRobotics Vision60 = Commercial Quadruped  Active 0.6 32 12 10 180
2021  BostonDynamics Stretch Commercial Manipulator  Active 2 500 7 23 480
2022 Tesla OptimusG1 Commercial Humanoid = Prototype 1.73 57 28 20 60
2022 GalbotRobotics  GalbotExplo  Commercial Quadruped = Prototype 0.6 25 12 8 90
rer
2022 MenteeRobotics MenteeOne Commercial Humanoid = Prototype 1.6 50 25 5 60
2022 XiaomiRoboticsLab = CyberOne = Commercial Humanoid @ Prototype 1.77 52 21 15 45
2023 Tesla OptimusG2 = Commercial Humanoid = Prototype 1.73 47 28 20 60
2023 FigureAl Figure01 ~ Commercial Humanoid = Prototype 1.68 60 40 20 300
2023 Apptronik Apollo Commercial Humanoid = Prototype 1.73 73 30 25 240
2023 LimXDynamics  LimXInfinit Commercial Humanoid  Active 1.75 85 52 10 480
y
2023 SUPCON SUPCONIri  Commercial Humanoid = Prototype 1.7 65 30 8 90
s
2024 KeplerRobotics ForeruznnerK Commercial Humanoid = Active 1.78 85 52 15 480
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Figure. Atlas (Boston Dynamics), Optimus (Tesla), Digit (Agility Robotics), Figure 02 (Figure Al), G1 (Gitai), NEO
(1X Technologies), Iron (XPENG Roboatics), Phoenix (Sanctuary Al), Apollo (Apptronik), ANYmal (ANYbotics), Gol
(Unitree Robatics), Spot (Boston Dynamics)

Analysis of recent research and publications.
Hezog et al. implement hierarchical inverse dynamics
on a torque-controlled humanoid and show reliable
momentum/contact tracking during walking [4].
Escande et al. propose a fast hierarchical QP and
enable online whole-body motion at control rates
suitable for balance [5]. Dai, Valenzuela, and Tedrake
combine centroidal dynamics with full kinematics to
plan feasible whole-body motions for locomotion [6].
Kajita and Tani introduce the LIPM and demonstrate
stable bipedal walking on uneven terrain with a
simplified template [7]. Haddadin surveys safety
principles for contact-rich interaction and defines
constraints for manipulation controllers [1]. Calinon
et al. use imitation learning to reproduce human-like
arm motions that generalize to new task conditions
[8]. Ott et al. present Cartesian impedance control for

flexible-joint robots and show compliant, safe
interaction via stiffness and damping regulation [9].
Levine et al. train end-to-end visuomotor policies
from real data and achieve closed-loop arm
control directly from pixels [10]. Kuindersma et
al. integrate optimization-based planning, estimation,
and control on Atlas and demonstrate coordinated
multi-contact behaviors [11]. Yang et al. improve
data efficiency for reinforcement learning in legged
systems and reduce the samples needed for
locomotion skills [12]. Fallon et al. couple online
affordance-based perception with  whole-body

planning to select feasible actions in real
time [13]. Atkeson and Stephens analyze
random sampling for dynamic programming

and provide tools for coordinating high-dimensional
control [14].
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The surveyed works cover model-based control
(LIPM, centroidal dynamics, hierarchical inverse
dynamics, MPC), learning-based controllers (PPO,
SAC, DDPG, TD3, transformer policies), sim-to-real
techniques  (domain/dynamics  randomization,
curricula, RMA), state estimation (EKF/IEKF,
multiple-model, invariant neural-augmented filters),
hardware choices (compliant/series-elastic actuation,
thruster assistance), and safety elements (constrained
policy optimization, backup controllers). However,
results are reported under heterogeneous
assumptions, metrics, and contact conditions, and are
spread across commercial, open-source, and
academic platforms without a unified view. This
study contributes a structured synthesis and a
consolidated platform comparison, linking published
methods to typical scenarios (flat ground, rough
terrain, payload changes, and loco-manipulation) and
summarizing open challenges highlighted in the
sources. The need for such an aligned, evidence-
based overview motivates the present work.

Classical and Hybrid Control. Traditional
control strategies rely on model-based techniques that
use the robot’s dynamics to keep it stable [15]. The
Linear Inverted Pendulum Model (LIPM) is widely
used to generate walking patterns in bipedal robots by
simplifying their dynamics [7], [108]. Extensions that
include centroidal dynamics and full kinematics
support whole-body motion during locomotion and
manipulation [6]. Hierarchical inverse-dynamics and
guadratic programming formulations help improve
stability while juggling multiple tasks [4], [5], [16].

A recent MuJoCo benchmark compared a
Unitree Gol controlled by preview-horizon MPC
with the same robot using PPO-based RL under
identical external pushes. Within that setup, MPC
handled larger disturbances thanks to explicit
optimisation, whereas RL achieved a lower cost of
transport on flat ground. These results are indicative
of that configuration (controller tuning, horizons,
reward/cost weights, and simulator fidelity) and do
not establish a general ranking; rather, they suggest
that a hybrid MPC-RL pipeline could capture the
benefits of both approaches [17].

Safe and compliant interaction with the
environment is also important. Impedance control lets
robots adjust joint stiffness and damping, helping them
absorb impacts and stay stable under contact forces [9].
Collision-detection and safe-response methods further
contribute to both safety and stability [1].

Learning-Based Methods. Reinforcement
learning (RL) lets robots refine control policies
through trial and error [18]. Its roots include early
work on temporal-difference learning and natural
policy gradients [19], [20], [21], [22]. Modern model-
free algorithms — DQN [23], [24], DRQN [25], PPO
[26], DDPG [27], and SAC [28] — have trained

quadrupeds to run, obey velocity commands, and
stand up after falls [29]. A vision-based PPO policy
later let the same robot traverse rocks and steps at 1
m/s using only onboard sensors [30]. Large MuJoCo
studies mapped sample-efficiency and stability trade-
offs across these algorithms [31], [32]. Data-efficient
tools such as Hindsight Experience Replay [33],
imitation learning  (DeepMimic) [34], and
hierarchical policies [12], [35] shorten training time.

Recent controllers now match full-size bipeds. A
transformer policy trained in simulation let Agility
Digit walk outdoors and resist pushes without further
tuning [36]. Imitation-Relaxation Reinforcement
Learning (IRRL) reached 5 m/s on a Mini-Cheetah
while keeping gaits stable [37]. For value methods,
Double DQN [38], Dueling networks [39], Prioritized
Replay [40], and Rainbow [41] cut bias and speed
learning. A3C [42] and Evolution Strategies [43]
scale training; TRPO [44], K-FAC TRPO [45], and
PPO keep on-policy updates stable. TD3 mitigates
critic over-estimation [46]; PCL unifies actor—critic
and Q-learning under one consistency loss [47].
Conservative Q-Learning tackles over-estimation in
offline settings [48]. MAVIPER adds interpretability
with decision-tree policies [49]. Beyond control,
AlphaZero proved RL’s reach in board games [50].

Imitation learning avoids hand-crafted rewards.
GAIL frames imitation as a GAN game [51]. Even a
simple speed reward can yield rich behaviours when
combined with procedural terrains [52].

Whole-body loco-manipulation has also
advanced. Digit lifted and placed boxes after
simulation training [53]; a quadruped-arm system
learned smooth coordination [54]; WoCoCo used
phase-specific networks for humanoid motion [55];
PolyTask distilled several specialists into one multi-
task policy [56].

Meta-learning cuts adaptation time. MAML [57]
and RL?2 [58] fine-tune quickly. Classic tools such as
LQR-trees [59], [60] and distributional RL [61], [62]
refine control. Hybrid controllers pair parametric gait
generators with residual networks [63] or planners
with RL execution [64]. Conditioned policies switch
gaits on the fly [65]. Curriculum plus meta-RL extend
speed ranges: curricular HER quadrupeds ran 3.45
m/s outside [66], and MetaLoco gave zero-shot
walking across designs [67]. Rapid Motor Adaptation
copes with sudden terrain changes [68].

Effective sim-to-real transfer is still vital.
Progressive Nets reduce forgetting while bridging the
reality gap [69], [70]. Policy distillation and Actor-
Mimic compress multiple gaits [71], [72]. Option-Critic
and Meta-Learning Shared Hierarchies reuse low-level
skills [73], [74]. Latent-space MPC [75] and
curriculum-based HER [76] further boost efficiency.

Overall, learning-based methods now rival
classical controllers in many tasks and offer fast
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adaptation. Progress in data efficiency, safety, and
transfer should make them even more practical for
real-legged robots.

Sim-to-Real, Hardware, and Perception.
Policies that work in simulation often fail on hardware
because simulators miss many subtle effects. Domain
and dynamics randomisation make controllers see a
wider range of conditions, which improves robustness
[77], [78]. With heavy randomisation alone,
Tan transferred a quadruped policy from MuJoCo to
the real robot on the first try [79].

Rapid Motor Adaptation (RMA) addresses
changing terrain by pairing a base policy with an
online adaptation module [80]. Trained only in
simulation, the same quadruped walks on grass,
stairs, pebbles, and sand with no manual tuning. The
idea relates to meta-RL adaptation modules [81].
Dao [82] randomised payload mass so a biped kept
its footing while pulling carts or carrying liquids, and
Duan [64] learned a transition model that respects
footstep plans on Cassie. Model-based meta-policy
optimisation speeds such adaptation by learning a
simulator-agnostic critic [83].

Curricula and stochastic contact modelling also
help. A box-manipulation curriculum let Digit lift and
place boxes without extra system identification [53].
NVIDIA’s GROOT NI takes a broader step: it
combines a vision—language transformer with a
diffusion action head and executes language-
conditioned tasks on a GR-1 humanoid after purely
simulated training [84].

Hardware choices can boost stability, too.
Caltech’s LEO mixes legs with small thrusters for extra
balance [85]. Series-elastic and compliant actuators
absorb shocks on rough ground [86], and elastic hips
with passive knees and ankles store energy in
simulation tests [87]. A broad survey of recent
humanoid hardware appears in [88]. Open designs
such as Solo [89] and the series—parallel RHS layout
[90] show how lightweight drives and compliant
linkages improve bandwidth and payload capacity.

Accurate state estimation is another pillar.
Combining leg kinematics with inertial data in an
EKF offers real-time estimates [91], [92], while
multiple-model filters handle changing contact
modes [93]. Hybrid filters such as the Invariant
Neural-Augmented KF (INNKF) limit drift after slips
[94], [95], and low-rate camera or LiDAR updates, as
in Pronto, bound long-term error [96]. Large-scale
real-world data can help as well: over 800,000 grasp
attempts let a vision network learn closed-loop
grasping without precise calibration [97].

Finally, safety remains vital. Constrained Policy
Optimisation  [98] and intrinsic-motivation
exploration [99], [100] reduce risky actions, yet
learned policies still lack formal guarantees [101].
One remedy adds a backup controller that takes over

near constraints [102]. Others learn Lyapunov or
control-barrier functions alongside the main policy
[101]. These hybrids lower the fall rate in hardware
tests while keeping task performance high.

Together, advances in transfer, hardware,
perception, and safety continue to narrow the gap
between simulation and reliable real-world
deployment.

Synthesis. Recent studies — such as [36], [37],
[63], [64], [66], [67], [68], [80], [82], [102] — show
steady progress toward reliable, agile legged robots.
Learning-based controllers now deliver fast,
adaptable gaits on rough terrain, while sim-to-real
techniques narrow the modelling gap. Hardware
innovations (e.g. thrusters, soft or series-elastic
actuators) extend the range of stable behaviours.
Improved state-estimation pipelines fuse contact
cues with neural corrections to handle slip.
Safety layers — backup policies or control-barrier
functions — cut fall rates. Hybrid designs
combine model-based planning with data-driven
residuals, and meta-learning speeds online
adaptation. Together, these strands bring legged
machines closer to animal-level stability, letting
them cope with unpredictable disturbances
and new tasks that once defeated purely model-
based methods.

For broader context, Tong reviews recent
humanoid hardware and control trends [103]; Ha
surveys learning-based legged locomotion and open
problems [104]; and Gu outline a 2025 roadmap for
humanoid locomotion and manipulation that
integrates planning, control, and learning [105].

Future Directions. Robotic dynamic stability is
an evolving field with several areas that require
further exploration:

e Hybrid Control Architectures: Integrate
reinforcement learning with model-based control
[106] to combine adaptability with stability.

e Adaptability and Online  Tuning:
Techniques such as the Multiplicity of Behavior
(MoB) framework [107] highlight the need for real-
time tuning.

e Extreme Dynamic Stability: Research such
as line walking with point feet [108] opens new
avenues for maintaining stability on minimal
supports.

e Multi-Legged Locomotion:  Extending
controllers to robots with many legs [109] can
improve both speed and dynamic stability.

e Sim-to-Real Transfer: Enhancing
simulation fidelity and developing robust transfer
methods remain essential for bridging the gap
between simulation and reality.

Collaboration across academia, industry, and
policy is essential to address these challenges and
drive the next phase of legged robotics.
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Conclusions. We met our goal: reviewed
approaches to dynamic stability in legged robots,
identified the main challenges, and outlined next steps.

Based on the results of the research, the
following main conclusions can be drawn:

-systematized model-based, learning-based, and
hybrid control to show how each supports gait,
balance, and whole-body motion;

-analyzed published results on walking,
manipulation, and coordinated behaviors, relying
only on the cited sources;

-clarified sim-to-real tools — domain and
dynamics randomization, curricula, distillation,
progressive nets, and rapid motor adaptation — and
what they improve for hardware transfer;

-showed that estimation pipelines (leg-IMU
EKF/IEKF, multiple-model/contact-aided, invariant
neural-augmented filters) are central for cutting drift
and handling contact changes;

-highlighted hardware choices — compliant or
series-elastic actuation and thruster assistance — that
widen the range of recoverable disturbances;

-presented a single comparison of commercial,
open, and academic platforms by their reported
stability practices and specifications;

Taken together, the literature points to hybrid
control plus strong estimation as key for stability
under intermittent contacts, while sim-to-real fidelity
and safety layers remain practical bottlenecks. Near-
term work should tighten model-RL integration,
enable online adaptation, explore point-foot
balancing, and extend methods to multi-leg systems.
The practical value is a scenario-based view that
helps pick controllers, transfer methods, estimators,
and safety layers for real robots.
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